07 - Normal analysis

HCI/PSYCH 522 Iowa State University

February 10, 2022

(HCI522@ISU)

Overview

- Inference for means
 - Estimating 1 mean
 - Comparing 2 means

Estimating 1 mean

Suppose we have

- n numerical observations,
- \bullet with the same population mean μ and
- population standard deviation σ , and
- observations are independent.

Let Y_i be the value for the *i*th observation and assume $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$.

The sample can be summarized by the sample mean

$$\overline{Y} = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$$

and sample variance

$$S^{2} = \frac{(Y_{1} - \overline{Y})^{2} + (Y_{2} - \overline{Y})^{2} + \dots + (Y_{n} - \overline{Y})^{2}}{n - 1}$$

(or the sample standard deviation $S = \sqrt{S^2}$.)

Sample statistics in R

```
heights <- c(66.9, 63.2, 58.7, 64.2, 65.1)
```

```
length(heights) # number of observations
```

[1] 5

```
mean(heights) # sample mean
```

[1] 63.62

var(heights) # sample variance

[1] 9.417

sd(heights) # sample standard deviation

[1] 3.068713

Parameter estimation

If we assume $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then we can use these sample statistics to estimate population parameters:

- $\hat{\mu} = \overline{Y}$,
- $\bullet \ \hat{\sigma} = S \text{, and}$
- $\bullet \ \hat{\sigma}^2 = S^2.$

Please remember that sample statistics are only estimates (not the true values).

Posterior belief about population mean

Our posterior belief about the population mean is

$$\mu | y \sim t_{n-1}(\overline{y}, s^2/n)$$

where

- $y = (y_1, \ldots, y_n)$ is the data,
- n is the sample size,
- \overline{y} is the sample mean,
- s^2 is the sample variance, and
- $t_{n-1}(\overline{y},s^2/n)$ is a T distribution with
 - n-1 degrees of freedom,
 - $\bullet~ {\rm location}~ \overline{y}, {\rm and}$
 - scale s.

Posterior belief about female mean height

Posterior belief about female mean height

Posterior belief

Credible interval in R

```
t.test(heights, conf.level = 0.95)
##
##
   One Sample t-test
##
## data: heights
## t = 46.358, df = 4, p-value = 1.295e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
   59,80969 67,43031
##
## sample estimates:
## mean of x
##
       63.62
```

Calculating posterior probabilities

What is our belief that mean female height is greater than 60 inches?

 $P(\mu > 60|y)$

1-pt((60-mean(heights))/(sd(heights)/sqrt(length(heights))), df = length(heights)-1)

[1] 0.9711426

or

```
plst <- function(q, df, location, scale) { # location-scale t distribution
 pt( (q-location)/scale, df = df)
1-plst(60, df = length(heights)-1, location = mean(heights), scale = sd(heights)/sqrt(length(heights)))
## [1] 0.9711426
```

Comparing 2 means

Suppose we have groups indexed by $g=1,\ldots,G$

- n_g numerical observations in group g,
- the same population mean μ_g within a group and
- \bullet same population standard deviation σ_g within a group,
- all observations are independent.

Let Y_{ig} be the value for the *i*th observation in the *g*th group and assume $Y_{ig} \stackrel{ind}{\sim} N(\mu_g, \sigma_g^2)$. When we collect data, we will have a sample mean and sample standard deviation for each group.

Sample statistics in R

```
d <- read_csv("heights.csv")</pre>
```

```
d %>%
 group_by(sex) %>%
 summarize(n = n(),
           mean = mean(height),
           sd = sd(height))
## # A tibble: 2 x 4
##
                       sd
  sex n mean
##
  <chr> <int> <dbl> <dbl><</pre>
## 1 female 11 64.1 1.59
## 2 male 7 71.6 2.66
```

Posterior beliefs

Posterior beliefs about mean height

Posterior probabilities

What is the probability that males are, on average, taller than females?

```
P(\mu_{\mathsf{male}} > \mu_{\mathsf{female}} | y)
```

We use a Monte Carlo approach

```
rlst <- function(n, df, location, scale) {
    location+scale*rt(n, df = df)
}
n_reps <- 100000
mu_female <- rlst(n_reps, df = 11-1, location = 64.1, scale = 1.59/sqrt(11))
mu_male <- rlst(n_reps, df = 7-1, location = 71.6, scale = 2.66/sqrt(7))
mean(mu_male > mu_female)
```

[1] 0.99981

Credible interval for the difference

a <- 1 - 0.95
quantile(mu_male - mu_female, prob = c(a/2, 1-a/2))
2.5% 97.5%
4.822371 10.161489</pre>

Using built in R functions

```
d <- read_csv("heights.csv")</pre>
t.test(height ~ sex, data = d)
##
##
    Welch Two Sample t-test
##
## data: height by sex
## t = -6.7492, df = 8.7839, p-value = 9.392e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -10.033670 -4.981915
## sample estimates:
## mean in group female mean in group male
##
               64.06364
                                     71.57143
```