08 - Statistical Inference

HCI/PSYCH 522 Iowa State University

February 15, 2022

(HCI522@ISU)

Overview

Inference

- Population vs sample
- Convenience sample
- Random sample
- Statistical inference

Causality

- Observational study
- (Quasi-)experiment
- Randomized experiment
- Causal inference

Population

Population

https://www.scribbr.com/methodology/population-vs-sample/

Definition

The population is the entire group that you want to draw conclusions about.

- All graduate students at ISU
- All Mac M1 minis
- All interior design apps

Sample

Sample

https://www.scribbr.com/methodology/population-vs-sample/

Definition

A sample is the specific group you will collect data from.

- HCI students at ISU
- My Mac M1 mini
- All interior design apps on the Apple App Store

Population vs Sample

Population vs Sample

https://www.scribbr.com/methodology/population-vs-sample/

Population vs Sample

https://www.omniconvert.com/what-is/sample-size/

Parameters

https://en.wikipedia.org/wiki/Statistical_parameter

Definition

A parameter is any measur[able] quantity of a statistical population that summarizes or describes an aspect of the population.

- Population mean
- Population standard deviation
- Population probability of success
- Population probability density function

Statistics

Definition

A statistic is a function of your data.

- Numeric quantities
 - Sample mean
 - Sample standard deviation
 - Sample proportion of success
- Graphical statistics
 - Histogram
 - Scatterplot

Estimator

Estimator

Definition

An estimator is a statistic that estimates a population parameter.

- Sample mean estimates the population mean
- Sample standard deviation estimates the population mean
- Sample proportion of successes estimates the population probability of success
- Histogram estimates the probability density function

Sampling error

https://en.wikipedia.org/wiki/Sampling_error

Definition

Sampling error is the error caused by observing a sample instead of the whole population.

- Sample mean minus population mean
- Sample proportion minus population probability

Statistical inference

https://courses.lumenlearning.com/wm-concepts-statistics/chapter/wim-linking-probability-to-statistical-inference/

Representative sample

https://www.investopedia.com/terms/r/representative-sample.asp

Definition

A representative sample is a subset of a population that seeks to accurately reflect the characteristics of the larger group.

Random samples are probabilistically "guaranteed" to be representative.

Convenience sample

https://en.wikipedia.org/wiki/Convenience_sampling

Definition

Convenience sampling is a type of non-probability sampling that involves the sample being drawn from that part of the population that is easy to contact or reach.

- Students in HCI 522 representing all ISU graduate students
- ISU undergraduate students representing all people
- Interior design apps on the App Store representing all interior design apps

Random sample

Definition

A random sample is a sampling technique that uses a random mechanism to include individuals in the sample.

Random mechanism examples:

- Rolling dice
- Lotteries
- Random number table
- Random number generation, e.g. RAND() in Excel

Simple random sample

https://www.investopedia.com/terms/s/simple-random-sample.asp

Definition

A simple random sample is a subset of the population in which each member of the subset has an equal probability of being chosen.

Simple random sample in R

```
n <- 10000 # enumerate all n individuals
sample(n, size = 10)</pre>
```

[1] 7085 7707 399 4713 8797 9625 2386 1954 164 6308

Alternatively

[1] 9233 6764 1195 8612 8273 4602 5213 5452 3906 7771

Statistical inference

https://online.stanford.edu/courses/stats200-introduction-statistical-inference

Definition

Statistical inference is the process of using data [from a sample] to draw conclusions about a population.

February 15, 2022

17 / 35

https://courses.lumenlearning.com/wm-concepts-statistics/chapter/wim-linking-probability-to-statistical-inference/

Binomial example

Parameter: proportion of app users who use a chatbot Statistic: 6 out of 20 randomly sampled users use the chatbot

```
y <- 6; n <- 20; a <- 1-0.95
qbeta(c(a/2,1-a/2), 1+y, 1+n-y) %>% round(2)
## [1] 0.15 0.52
```

This 95% credible interval is a statement about the population parameter.

Normal example

Parameter: mean EEG alertness level of air traffic controllers Statistic: in a random sample of 30 air traffic controllers, normalized EEG alertness level had a mean of 73 and a standard deviation of 5

```
n <- 30; mn <- 73; sd <- 5; se <- sd/sqrt(n); a <- 1-0.95
(qt(c(a/2,1-a/2), df = n-1)*se + mn) %>% round(1)
## [1] 71.1 74.9
```

The following 95% credible interval is a statement about the population parameter.

Observational study

https://study.com/academy/lesson/observational-study-in-statistics-definition-examples.html

Definition

An observational study is a study in which the researcher simply observes the subjects without interfering.

- Recording how long it takes an undergraduate student to register
- Recording usage of a twitter hashtag

Observational study

Correlations (not causation)

Correlations can be inferred to the population from an observational study based on a random sample.

Spurious correlations

https://www.tylervigen.com/spurious-correlations

(HCI522@ISU)

08 - Statistical Inference

(Quasi-)experiment

Definition

A (quasi-)experiment is a study where the researcher (non-randomly) assigns a treatment to an experimental unit, e.g. individual.

- Live HCI 522 students must use R while asynchronous students must use Excel
- First 100 students to register have no chatbot, next 100 students to register have a chatbot

Randomized experiment

Definition

A randomized experiment is a study where the researcher assigns a treatment to an experimental unit, e.g. individual.

- Randomly forcing HCI 522 students to use R or Excel
- Each student randomly gets a chatbot or not when registering for courses

Randomizing treatments in R

```
data.frame(subject = 1:10) %>%
  mutate(treatment = sample(c("A","B"), size = n(), replace = TRUE))
```

##		subject	treatment	
##	1	1	A	
##	2	2	В	
##	3	3	В	
##	4	4	В	
##	5	5	В	
##	6	6	В	
##	7	7	В	
##	8	8	В	
##	9	9	A	
##	10	10	В	

Randomized Experiment

Randomizing treatments in R

```
data.frame(subject = 1:10) %>%
  mutate(treatment = sample(c("A","B","C"), size = n(), replace = TRUE, prob = c(2,3,5)/10))
```

##		subject	treatment
##	1	1	В
##	2	2	С
##	3	3	А
##	4	4	A
##	5	5	С
##	6	6	В
##	7	7	В
##	8	8	С
##	9	9	В
##	10	10	A

Balanced

Definition

An experiment is **balanced** if there are the same number of experimental units for each treatment (or combination of treatments).

Randomized Experiment

Balanced treatments in R

```
data.frame(subject = 1:10) %>%
 mutate(treatment = sample(rep(c("A", "B"), times = 5), size = n()))
```

##		subject	treatment	
##	1	1	В	
##	2	2	В	
##	3	3	В	
##	4	4	A	
##	5	5	А	
##	6	6	А	
##	7	7	В	
##	8	8	В	
##	9	9	А	
##	10	10	A	

Randomized Experiment

Randomizing treatments in R

```
data.frame(subject = 1:10) %>%
    mutate(treatment = sample(rep(c("A", "B", "C"), times = c(2,3,5)), size = n()))
```

##		subject	treatment
##	1	1	С
##	2	2	В
##	3	3	В
##	4	4	С
##	5	5	A
##	6	6	С
##	7	7	С
##	8	8	В
##	9	9	С
##	10	10	A

Causal inference

https://methods.sagepub.com/reference/the-sage-encyclopedia-of-educational-research-measurement-and-evaluation/i4418.xml

Definition

Causal inference refers to the process of drawing a conclusion that a specific treatment (i.e., intervention) was the "cause" of the effect (or outcome) that was observed.

Causal inferences can only be drawn from randomized experiments.

Causal inference

https://towardsdatascience.com/causal-inference-962ae97cefda

Binomial comparison

Scientific question: effect of chatbot on probability to correctly register for courses Experiment: 20 volunteer undergraduate students were randomly assigned a chatbot or no chatbot. Amongst the 10 in the chatbot group, all successfully registered. In the non-chatbot group 8/10 successfully registered.

```
n_reps <- 100000; a <- 1-0.95
theta_chatbot <- rbeta(n_reps, shape1 = 1+10, shape2 = 1+10-10)
theta_nochatbot <- rbeta(n_reps, shape1 = 1+ 8, shape2 = 1+10- 8)
quantile(theta_chatbot - theta_nochatbot, probs = c(a/2, 1-a/2)) %>% round(2)
## 2.5% 97.5%
## -0.11 0.46
```

This 95% credible interval is a causal effect of the treatment (chatbot) but only for those students in this study.

Normal comparison

Scientific question: effect of chatbot on course registration time Experiment: 40 randomly chosen ISU undergraduate students were randomly assigned a chatbot or no chatbot. The study statistics are

group n mean sd
1 chatbot 21 2.0 1.00
2 no chatbot 19 1.5 0.75

```
n_reps <- 100000; a <- 1-0.95
mu_chatbot <- rt(n_reps, df = 21-1)*( 1/sqrt(21)) + 2
mu_nochatbot <- rt(n_reps, df = 19-1)*(0.75/sqrt(19)) + 1.5
quantile(mu_chatbot - mu_nochatbot, probs = c(a/2, 1-a/2)) %>% round(2)
## 2.5% 97.5%
## -0.08 1.08
```

This 95% credible interval is a causal effect of the treatment (chatbot) for all ISU undergraduate students.

(HCI522@ISU)

08 - Statistical Inference

Causal inference cheat sheet

https://nc233.com/2020/04/causal-inference-cheat-sheet-for-data-scientists/

NC233. Experiment	com identical	Control and treatment are identical and their behavior is deterministic . Causal effect of treatment is directly the difference between observations for the two groups. <i>Physics, Biology,-Social-sciences-</i>	
Statistical Experiment	<u>††††††</u> <u>††††††</u> †††††	Control and treatment are not identical but divided at random. This makes it possible to build a precise estimate of the causal effect of treatment. A/B testing, Central Limit Theorem, Bayesian Statistics	evid
Quasi-experiment	ŤŤŤŤŤŤŤ ŤŤŤŤŤŤŤ	Control and treatment are not identical and divided by a "natural" criterion. Depending on "internal" and "external" quality of the criterion, it is possible to build a good estimate of the causal effect of treatment. Differences-in-differences, Regression Discontinuity, Instrumental variables, Matching, Controlled Regression	
Counterfactuals		Control group does not exist, instead its behaviour is estimated with a predictive model of what would have happened without the treatment (= counterfactual). Synthetic Differences-in-Differences, Athey & Imbens, CausalImpact nc233. com	

Levels of evidence ladder for causal inference methods

Ce

(HCI522@ISU)

Summary

Samples

- Population vs sample
- Convenience sample
- Random sample
- Statistical inference
- Randomized experiment
 - Observational study
 - (Quasi-)experiment
 - Randomized experiment
 - Causal inference