10 - Review

HCI/PSYCH 522 Iowa State University

February 22, 2022

Review

- Statistical inference
 - Scientific question
 - Response variable
 - Explanatory variable (or grouping)
 - Random sample? (If yes, inference to the population.)
 - Randomized treatment? (If yes, causal inference.)
- Statistical analysis
 - Response variable
 - $\bullet~$ Count data with known maximum $\rightarrow~$ binomial
 - $\bullet \ \ {\rm Continuous} \ {\rm data} \rightarrow {\rm normal}$
 - Explanatory variable
 - $\bullet \ \ {\rm None} \to {\rm one} \ {\rm group} \ {\rm models}$
 - $\bullet \ \ {\rm Groups} \to {\rm multiple} \ {\rm group} \ {\rm models}$
 - $\bullet \ \ {\sf Continuous} \to {\sf regression}$

Audio guide messages

An experiment was conducted to understand the impact of audio guide messages in emergency warnings. Students at Iowa State University voluntarily enrolled in a virtual reality simulation experiment where they were randomly assigned to a scenario that either included or did not include audio guide messages during the emergency warning. For each student, researchers recorded whether or not the student successfully navigated the emergency.

- Scientific question
- Response variable
- Explanatory variable (or grouping)
- Random sample? (If yes, inference to the population.)
- Randomized treatment? (If yes, causal inference.)

Audio guide messages: inference

- Scientific question: How do audio guide messages affect successful navigation during an emergency?
- Response variable: Number of students who successfully navigated the emergency.
- Explanatory variable (or grouping): With and without audio guide messages (two groups)
- Random sample? (If yes, inference to the population.): No, volunteers
- Randomized treatment? (If yes, causal inference.): Yes, presence of audio guide messages was randomized.

Audio guide messages: data

```
emergency <- read_csv("emergency.csv")</pre>
```

emergency

A tibble: 20 x 5

##	individual	audio_guide	success	cortisol_baseline	cortisol_stress
----	------------	-------------	---------	-------------------	-----------------

##		<dbl></dbl>	<chr></chr>	<chr< th=""><th>></th><th><dbl></dbl></th><th><dbl></dbl></th></chr<>	>	<dbl></dbl>	<dbl></dbl>
##	1	1	No	Yes		107.	130.
##	2	2	Yes	Yes		96.5	120.
##	3	3	No	No		100.	130.
##	4	4	Yes	Yes		105.	119.
##	5	5	Yes	No		103.	119.
##	6	6	Yes	Yes		95.7	119.
##	7	7	Yes	No		99.3	120.
##	8	8	Yes	Yes		98.1	118.
##	9	9	No	Yes		97.9	131.
##	10	10	No	No		105.	129.
##	11	11	Yes	Yes		105.	118.
##	12	12	Yes	Yes		89.2	120.
##	13	13	No	No		99.5	131.
(HCI522@ISU)						10 - Reviev	v

```
10 - Review
```


Summary statistics

Posterior belief about probability of success

Posterior belief about probability of success

Audio guide effect on emergency navigation

Probability difference

```
n_reps <- 100000
prob_yes <- rbeta(n_reps, shape1 = 1+7, shape2 = 1+10-7)
prob_no <- rbeta(n_reps, shape1 = 1+4, shape2 = 1+10-4)
mean(prob_yes > prob_no)
## [1] 0.90215
# Credible interval for the difference
a <- 1-0.95
quantile(prob_yes - prob_no, probs = c(a/2, 1-a/2))
## 2.5% 97.5%
## -0.1327103 0.6000329</pre>
```

Audio guide messages

An experiment was conducted to understand the impact of audio guide messages in emergency warnings. Students at Iowa State University voluntarily enrolled in a virtual reality simulation experiment where they were randomly assigned to a scenario that either included or did not include audio guide messages during the emergency warning. For each student, researchers recorded a baseline level of cortisol before the experiment began and a stress level of cortisol immediately after the experiment concluded.

- Scientific question
- Response variable
- Explanatory variable (or grouping)
- Random sample? (If yes, inference to the population.)
- Randomized treatment? (If yes, causal inference.)

Audio guide messages: inference

- Scientific question: How do audio guide messages affect cortisol levels during an emergency?
- Response variable: Ratio of stress to baseline cortisol levels.
- Explanatory variable (or grouping): With and without audio guide messages (two groups)
- Random sample? (If yes, inference to the population.): No, volunteers
- Randomized treatment? (If yes, causal inference.): Yes, presence of audio guide messages was randomized.

Cortisol levels

Audio guide messages: data

```
emergency <- emergency %>%
  mutate(ratio = cortisol_stress / cortisol_baseline)
```

emergency

A tibble: 20×6 ## ## individual audio_guide success cortisol_baseline cortisol_stress ratio <dbl> <chr> ## <chr> <dbl> <dbl> <dbl> 1 No 107. 130. 1.21 ## 1 Yes ## 2 2 Yes Yes 96.5 120. 1.24 ## 3 3 No 100. 130. 1.29 No ## 4 4 Yes Yes 105. 119. 1.13 ## 5 5 Yes No 103. 119. 1.16 ## 6 6 Yes 95.7 119. 1.24 Yes ## 7 7 Yes No 99.3 120. 1.21 ## 8 8 Yes Yes 98.1 118. 1.20 ## 9 9 No Yes 97.9 131. 1.34 ## 10 10 No No 105. 129. 1.23 ## 11 11 Yes Yes 105. 118. 1.13 ## 12 12 Yes Yes 89.2 120. 1.34

Cortisol levels

Audio guide messages: data

summary(emergency)

##	individual	audio_guide	success	cortisol_baseline	cortisol_stress	ratio
##	Min. : 1.00	Length:20	Length:20	Min. : 89.21	Min. :118.1	Min. :1.130
##	1st Qu.: 5.75	Class :character	Class :character	1st Qu.: 97.85	1st Qu.:119.7	1st Qu.:1.202
##	Median :10.50	Mode :character	Mode :character	Median :100.19	Median :124.4	Median :1.235
##	Mean :10.50			Mean :100.73	Mean :124.9	Mean :1.242
##	3rd Qu.:15.25			3rd Qu.:104.83	3rd Qu.:130.7	3rd Qu.:1.297
##	Max. :20.00			Max. :107.94	Max. :131.5	Max. :1.344

```
ggplot(emergency, aes(x = individual, y = ratio, color = audio_guide)) +
geom_point()
```



```
ggplot(emergency, aes(x = audio_guide, y = ratio)) +
 geom_jitter(width=0.1)
```



```
ggplot(emergency, aes(x = ratio, fill = audio_guide)) +
geom_histogram()
```



```
(HCI522@ISU)
```

Summary statistics

```
s_emergency <- emergency %>%
 group_by(audio_guide) %>%
 summarize(n = n(),
          mean = mean(ratio),
          sd = sd(ratio)) %>%
 mutate(se = sd/sqrt(n))
s_emergency
## # A tibble: 2 x 5
##
   audio_guide n mean sd
                                   se
   <chr> <int> <dbl> <dbl> <dbl>
##
## 1 No
             10 1.27 0.0558 0.0177
## 2 Yes 10 1.21 0.0658 0.0208
```

Posterior belief about means

```
dlst <- function(x, df, location, scale) {</pre>
 dt((x-location)/scale, df = df)/scale
d <- data.frame(mu = seq(from=1.1, to=1.35, length=1001)) %>%
 mutate(yes = dlst(mu, df = 10-1, location = 1.21, scale = 0.0208),
         no = dlst(mu, df = 10-1, location = 1.27, scale = 0.0177)) %>%
 pivot_longer(cols = -mu, names_to = "audio_guide", values_to = "density")
ggplot(d, aes(x = mu, v = density, color = audio_guide, linetype = audio_guide)) +
 geom_line() +
 labs(x = "Probability of successful navigation",
      v = "Posterior belief".
      title = "Audio guide effect on cortisol ratio (stress/baseline)")
```

Cortisol levels

Posterior belief about mean

Audio guide effect on cortisol ratio (stress/baseline)

Cortisol ratio difference

```
n_reps <- 100000
mean_yes <- rt(n_reps, df = 10-1)*0.0208 + 1.21
mean_no <- rt(n_reps, df = 10-1)*0.0177 + 1.27
mean(mean_no > mean_yes)
```

[1] 0.97274

```
# Credible interval for the difference
a <- 1-0.95
quantile(mean_no - mean_yes, probs = c(a/2, 1-a/2))
## 2.5% 97.5%
## -0.001394185 0.121977226</pre>
```

Working from home

To try and understand the *working from home* trend, Nielsen conducts a nationwide survey of working adults to understand their satisfaction. Nielsen uses its database of all working adults to select a random sample of adults to survey. Of the subset of those respondents who indicated they are working from home, Nielsen records their "job satisfaction" on a scale from 0-10 (with 10 being the highest satisfaction).

- Scientific question
- Response variable
- Explanatory variable (or grouping)
- Random sample? (If yes, inference to the population.)
- Randomized treatment? (If yes, causal inference.)

Working from home: inference

- Scientific question: How satisfied are those who are working from home?
- Response variable: Likert (0-10) scale satisfaction response.
- Explanatory variable (or grouping): None
- Random sample? (If yes, inference to the population.): Apparently those sent a survey were randomly sampled, but unclear what percentage returned the survey.
- Randomized treatment? (If yes, causal inference.): Not applicable.

Nielsen satisfaction: data

```
nielsen <- read_csv("nielsen.csv")</pre>
```

nielsen

##	# A t	ibble:	1,0	000	x	2	
##	in	dividua	al s	sati	.sí	actio	on
##		<db]< th=""><th>L></th><th></th><th></th><th><db]< th=""><th>L></th></db]<></th></db]<>	L>			<db]< th=""><th>L></th></db]<>	L>
##	1		1				7
##	2		2				8
##	3		3				5
##	4		4				6
##	5		5				9
##	6		6				8
##	7		7				6
##	8		8				8
##	9		9				8
##	10	:	10				9
##	#	with 9	990	mor	е	rows	

Nielsen satisfaction: data

summary(nielsen)

##	individual	satisfaction			
##	Min. : 1.0	Min. : 2.000			
##	1st Qu.: 250.8	1st Qu.: 6.000			
##	Median : 500.5	Median : 7.000			
##	Mean : 500.5	Mean : 6.958			
##	3rd Qu.: 750.2	3rd Qu.: 8.000			
##	Max. :1000.0	Max. :10.000			

```
ggplot(nielsen, aes(x = individual, y = satisfaction)) +
geom_point()
```


Nielsen working from home satisfaction rating

Summary statistics

Posterior belief about mean

```
d <- data.frame(mu = seq(from=6.75, to=7.25, length=1001)) %>%
    mutate(satisfaction = dlst(mu, df = 1000-1, location = 6.96, scale = 0.0468))
ggplot(d, aes(x = mu, y = satisfaction)) +
    geom_line() +
    labs(x = "Mean satisfaction",
        y = "Posterior belief",
        title = "Nielsen working from home mean satisfaction")
```

Posterior belief about mean

Nielsen working from home mean satisfaction

Mean satisfaction

```
# Credible interval for the difference
a <- 1-0.95
qt(c(a/2, 1-a/2), df = 1000-1)*0.0468 + 6.96
## [1] 6.868162 7.051838
# Probability less than 7.0
pt( (7-6.96)/0.0468, df = 1000-1 )
## [1] 0.8035392
```

Proportion

Working from home

To try and understand the *working from home* trend. Nielsen conducts a nationwide survey of working adults to understand their satisfaction. Nielsen uses its database of all working adults to select a random sample of adults to survey. Of the subset of those respondents who indicated they are working from home. Nielsen records the number whose job satisfaction score is 7 or more (indicating satisfied and above).

- Scientific question
- Response variable
- Explanatory variable (or grouping)
- Random sample? (If yes, inference to the population.)
- Randomized treatment? (If yes, causal inference.)

Working from home: inference

- Scientific question: How satisfied are those who are working from home?
- Response variable: Count of those greater than 7.
- Explanatory variable (or grouping): None
- Random sample? (If yes, inference to the population.): Apparently those sent a survey were randomly sampled, but unclear what percentage returned the survey.
- Randomized treatment? (If yes, causal inference.): Not applicable.

Summary statistics

Posterior belief about probability

```
d <- data.frame(theta = seq(from=0.55, to=.7, length=1001)) %>%
  mutate(satisfaction = dbeta(theta, shape1 = 1+622, shape2 = 1+1000-622))
ggplot(d, aes(x = theta, y = satisfaction)) +
  geom_line() +
  labs(x = "Probability 'satisfied or higher'",
        y = "Posterior belief",
        title = "Nielsen working from home satisfaction")
```

Posterior belief about probability

Nielsen working from home satisfaction

Satisfaction probability

```
# Credible interval for the difference
a <- 1-0.95
qbeta(c(a/2, 1-a/2), shape1 = 1+622, shape2 = 1+1000-622)
## [1] 0.5915214 0.6515312
# Probability greater than 0.6
1-pbeta(0.6, shape1 = 1+622, shape2 = 1+1000-622)
## [1] 0.9214982
```

Summary

- Statistical inference
 - Scientific question
 - Response variable
 - Explanatory variable (or grouping)
 - Random sample? (If yes, inference to the population.)
 - Randomized treatment? (If yes, causal inference.)
- Statistical analysis
 - Response variable
 - $\bullet~$ Count data with known maximum $\rightarrow~$ binomial
 - $\bullet \ \ {\rm Continuous} \ {\rm data} \rightarrow {\rm normal}$
 - Explanatory variable
 - $\bullet \ \ {\rm None} \to {\rm one} \ {\rm group} \ {\rm models}$
 - $\bullet \ \ {\rm Groups} \to {\rm multiple} \ {\rm group} \ {\rm models}$
 - $\bullet \ \ {\sf Continuous} \to {\sf regression}$