09 - Simple Linear Regression

HCI/PSYCH 522 Iowa State University

February 17, 2022

(HCI522@ISU)

Overview

- Simple linear regression
 - Dependent variable
 - Independent variable
 - Continuous independent variable
- Assumptions
 - Linearity
 - Normality
 - Constant Variance
 - Independence

Simple linear regression

League of Legends

Dependent variable

Definition

The distribution of the dependent variable depends on the values of the independent variables.

Dependent variable examples:

- Gold per minute
- Time to register
- Satisfaction

Independent variable

Definition

The independent variable affects the distribution of the dependent variable.

Independent variable examples:

- Mouse sensitivity
- Availability of a chatbot
- App being used

Synonyms

Terminology (all of these are [basically] equivalent):

dependent	independent	
response	independent	
outcome	covariate	
endogenous	exogenous	

Independent-dependent variable

https://towardsdatascience.com/causal-inference-962ae97cefda

Continuous independent variable

League of Legends

Continuous independent variable

League of Legends

Simpe linear regression

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the dependent and independent variable, respectively, for individual i. Alternatively

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Importantly

$$E[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

and

$$Var[Y_i|X_i] = \sigma^2.$$

Visualize variability

Estimate model parameters

```
m <- lm(gpm ~ sensitivity, data = mouse)
m
##
## Call:
## lm(formula = gpm ~ sensitivity, data = mouse)
##
## Coefficients:
## (Intercept) sensitivity
## 640.63505 -0.09561</pre>
```

$$\hat{\beta}_0 = 641, \qquad \hat{\beta}_1 = -0.096$$

Fit a line

League of Legends

Credible intervals

confint(m)

##		2.5 %	97.5 %
##	(Intercept)	619.7064093	661.56368201
##	sensitivity	-0.1098489	-0.08136859

A 95% Cl for β_0 is (620, 662). A 95% Cl for β_1 is (-0.11, -0.081).

Uncertainty in the line

League of Legends

Interpretation

 $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

When $X_i = 0$ (when mouse sensitivity is 0), $E[Y_i]$ (expected gold per minute) is 641 with a 95% CI of (620, 662).

For every 1 increase in X_i (mouse sensitivity increases by 1), the expected increase in Y_i (gold per minute) is -0.096 with a 95% CI of (-0.11, -0.081).

For every 400 increase in X_i (mouse sensitivity increases by 1), the expected increase in Y_i (gold per minute) is -40 with a 95% CI of (-44, -32).

Regression summary

```
summarv(m)
##
## Call:
## lm(formula = gpm ~ sensitivity, data = mouse)
##
## Residuals:
##
       Min 1Q Median 3Q
                                        Max
## -23,2125 -8,8834 0,6222 7,8498 23,6453
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 640.635046 9.961643 64.31 < 2e-16 ***
## sensitivity -0.095609 0.006778 -14.11 3.59e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.56 on 18 degrees of freedom
## Multiple R-squared: 0.917, Adjusted R-squared: 0.9124
## F-statistic: 199 on 1 and 18 DF, p-value: 3.589e-11
```

Simple linear regression model assumptions

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Assumptions:

- Linearity
- Normality
- Constant variance
- Independence

Many plots will be based off residuals:

$$r_i = \hat{\epsilon}_i = Y_i - \hat{Y}_i = Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$$

Linearity assumption

Linear relationships between expected value of the dependent variable and the independent variable:

$$E[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

Look at

- Independent variable vs dependent variable
- Residuals vs predicted value

Linear assumption is valid

League of Legends

Linear assumption is valid

League of Legends

Linear assumption is valid

Residual Plot

Linear assumption is NOT valid

Linear assumption is NOT valid

Linear assumption is NOT valid

Residual Plot 0.50 Residuals 0.25 -0.00 -0.25 --0.50 -0 2 3 **Predicted Values**

Normality

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Best diagnostic is a QQ-plot

Normality

QQ-plot (normality is valid)

Q-Q Plot

Normality

QQ-plot (normality is valid)

Q-Q Plot

QQ-plot (normality is NOT valid)

Q–Q Plot

Constant variance

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Plot residuals vs predicted values and look for a "horn" shape pattern

Constant variance assumption is valid

Residual Plot

Constant variance assumption is NOT valid

Residual Plot

Independence

Independence

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

No great way to assess this assumption other than subject matter knowledge.

Main causes for dependence are

- temporal (residuals vs index might help)
- spatial
- clustering

Residuals vs index (independence assumption is valid)

Index Plot

Residuals vs index (independence assumption is NOT valid)

Independence

All plots together

Index Plot

Independence

Summary

Simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Assumptions:

- Linearity
- Normality
- Constant variance
- Independence