R02 - Regression with Categorical Independent Variables

HCI/PSYCH 522 Iowa State University

March 3, 2022

Binary independent variable

Recall the simple linear regression model

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2).$$

If we have a binary independent variable, i.e. the independent variable only has two levels say level A and level B, we can code it as

 $X_i = I(\text{observation } i \text{ is level } A)$

where I(statement) is an indicator function that is 1 when "statement" is true and 0 otherwise. Then

- β_0 is the mean response for level B,
- $\beta_0 + \beta_1$ is the mean response for level A, and
- β_1 is the mean difference in response (level A minus level B).

Player Skill Data

mouse <- read_csv("mouse.csv", show_col_types = FALSE) %>% mutate(Mouse = factor(Mouse))
head(mouse)

- # A tibble: 6 x 2
- Skill Mouse
- <dbl> <fct>
- 1 35.5 Dell
- 2 35.4 Dell
- 3 34.9 Dell
- 4 34.8 Dell
- 5 33.8 Dell
- 5 33.0 Dell
- 6 33.5 Dell

summary(mouse)

Skill	Mouse
Min. : 6.4	Basilisk (Wired) :57
1st Qu.:31.8	Dell :49
Median :39.5	Mamba (Wired) :71
Mean :38.8	Mamba (Wireless) :56
3rd Qu.:46.9	Viper (Wired, light):60
Max. :54.6	Viper (Wired) :56

Player Skill Plot

Regression model for skill

Let

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i is the Skill of the *i*th individual and

 $X_i = I(Mouse \text{ for observation } i \text{ is Viper (Wired)})$

then

- mean skill using Mamba (Wired) is β_0 ,
- mean skill using Viper (Wired) is $\beta_0 + \beta_1$, and
- mean difference in skill [Viper (Wired) minus Mamba (Wired)] is β_1 .

R code

```
two_mice <- mouse %>% filter(Mouse %in% c("Viper (Wired)", "Mamba (Wired)"))
two mice$X <- ifelse(two mice$Mouse == "Viper (Wired)", 1, 0)</pre>
m \leq lm(Skill ~ X, data = two mice)
summary(m)
Call:
lm(formula = Skill ~ X, data = two_mice)
Residuals:
   Min
            10 Median
                            30
                                   Max
-23.697 -3.991 1.414 5.803
                                 9.603
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.2972
                        0.8676 48.75 <2e-16 ***
Х
             0.5885 1.3066
                                  0.45
                                          0.653
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.311 on 125 degrees of freedom
Multiple R-squared: 0.001621, Adjusted R-squared: -0.006367
F-statistic: 0.2029 on 1 and 125 DF, p-value: 0.6532
```

R code

```
m <- lm(Skill ~ Mouse, data = two_mice)
summary(m)</pre>
```

Call: lm(formula = Skill ~ Mouse, data = two_mice)

Residuals:

Min 1Q Median 3Q Max -23.697 -3.991 1.414 5.803 9.603

Coefficients:

	Estimate	Std. Error t	value	Pr(> t)	
(Intercept)	42.2972	0.8676	48.75	<2e-16	***
MouseViper (Wired)	0.5885	1.3066	0.45	0.653	
Signif. codes: 0	'***' 0.00	1 '**' 0.01	'*' 0.0	05 '.' 0.1	1.1

Residual standard error: 7.311 on 125 degrees of freedom Multiple R-squared: 0.001621,Adjusted R-squared: -0.006367 F-statistic: 0.2029 on 1 and 125 DF, p-value: 0.6532

emmeans(m, "Mouse")

Mouse		emmean	SE	df	lower.CL	upper.CL
Mamba	(Wired)	42.3	0.868	125	40.6	44.0
Viper	(Wired)	42.9	0.977	125	41.0	44.8

Confidence level used: 0.95

Mice Skills

Using a categorical variable as an independent variable.

March 3, 2022 9 / 20

Regression with a categorical variable

- 1. Choose one of the levels as the reference level, e.g. Basilisk (Wired)
- 2. Construct dummy variables using indicator functions, i.e.

$$I(A) = \begin{cases} 1 & A \text{ is TRUE} \\ 0 & A \text{ is FALSE} \end{cases}$$

for the other levels, e.g.

 $X_{i,1} = I(Mouse \text{ for observation } i \text{ is Dell})$ $X_{i,2} = I(Mouse \text{ for observation } i \text{ is Mamba (Wired}))$ $X_{i,3} = I(Mouse \text{ for observation } i \text{ is Mamba (Wireless)})$ $X_{i,4} = I(Mouse \text{ for observation } i \text{ is Viper (Wired, light)})$ $X_{i,5} = I(Mouse \text{ for observation } i \text{ is Viper (Wired)})$

Estimate the parameters of a multiple regression model using these dummy variables.

Regression model

Our regression model becomes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \beta_4 X_{i,4} + \beta_5 X_{i,5}, \sigma^2)$$

where

- β_0 is the mean skill in the Basilisk (Wired) group
- $\beta_0 + \beta_1$ is the mean skill in the Dell group
- $\beta_0 + \beta_2$ is the mean skill in the Mamba (Wired) group
- $\beta_0 + \beta_3$ is the mean skill in the Mamba (Wireless) group
- $\beta_0+\beta_4$ is the mean skill in the Viper (Wired, light) group
- $\beta_0 + \beta_5$ is the mean skill in the Viper (Wired) group

and thus β_p for p > 0 is the difference in mean skills between one group and the reference group.

$\mathsf{R} \, \operatorname{\mathsf{code}}$

m <- lm(Skill ~ Mouse, dat m	a = mouse)		
Call: lm(formula = Skill ~ Mouse	e, data = mouse)		
Coefficients:			
(Intercept) 32.691	MouseDell -5.289	MouseMamba (Wired) 9.606	MouseMamba (Wireless) 6.994
MouseViper (Wired, light) 12.425	MouseViper (Wired) 10.194		
confint(m)			
	2.5 % 97.5 %		
(Intercept)	30.951394 34.431062		
MouseDell	-7.848142 -2.730232		
MouseMamba (Wired)	7.269897 11.942013		
MouseMamba (Wireless)	4.523030 9.465943		
MouseViper (Wired, light)	9.995893 14.854984		
MouseViper (Wired)	7.723030 12.665943		

R code (cont.)

summary(m)

Call: lm(formula = Skill ~ Mouse, data = mouse) Residuals: Min 10 Median 30 Max -25.5167 -3.3857 0.8143 5.1833 10.0143 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 32,6912 0.8846 36.958 < 2e-16 ***

 MouseDell
 -5.2892
 1.3010
 -4.065
 5.95e-05

 MouseMamba (Wired)
 9.6060
 1.1877
 8.088
 1.06e-14

 MouseMamba (Wireless)
 6.9945
 1.2565
 5.567
 5.25e-08

 MouseViper (Wired, light)
 12.4254
 1.2352
 10.059 < 2e-16</td>

 MouseViper (Wired)
 10.1945
 1.2565
 8.113
 8.88e-15

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.678 on 343 degrees of freedom Multiple R-squared: 0.4543, Adjusted R-squared: 0.4463 F-statistic: 57.1 on 5 and 343 DF, p-value: < 2.2e-16

Interpretation

- β_0 , i.e. mean of the dependent variable for the reference level
- $\beta_p, p > 0$: mean change in the dependent variable when moving from the reference level to the level associated with the p^{th} dummy variable

For example,

- The mean skill using the Basilisk (Wired) mouse is 32.7 (31,34.4).
- The mean increase in skill when using the Viper (Wired, light) mouse compared to the Basilisk (Wired) mouse is 12.4 (10,14.9).
- This model explains 45% of the variability in skill.

Using a categorical variable as an independent variable.

March 3, 2022 15 / 20

Many levels

Group means with 95% credible intervals

em <- emmeans(m, pairwise ~ Mouse)</pre> em\$emmeans

Mouse	emmean	SE	df	lower.CL	upper.CL
Basilisk (Wired)	32.7	0.885	343	31.0	34.4
Dell	27.4	0.954	343	25.5	29.3
Mamba (Wired)	42.3	0.793	343	40.7	43.9
Mamba (Wireless)	39.7	0.892	343	37.9	41.4
Viper (Wired, light)	45.1	0.862	343	43.4	46.8
Viper (Wired)	42.9	0.892	343	41.1	44.6

Confidence level used: 0.95

Group comparisons with 95% credible intervals

confint(em\$contrasts)

contrast	estimate	SE	df	lower.CL	upper.CL
Basilisk (Wired) - Dell	5.289	1.30	343	1.561	9.018
Basilisk (Wired) - Mamba (Wired)	-9.606	1.19	343	-13.010	-6.202
Basilisk (Wired) - Mamba (Wireless)	-6.994	1.26	343	-10.596	-3.393
Basilisk (Wired) - Viper (Wired, light)	-12.425	1.24	343	-15.965	-8.885
Basilisk (Wired) - Viper (Wired)	-10.194	1.26	343	-13.796	-6.593
Dell - Mamba (Wired)	-14.895	1.24	343	-18.450	-11.341
Dell - Mamba (Wireless)	-12.284	1.31	343	-16.028	-8.540
Dell - Viper (Wired, light)	-17.715	1.29	343	-21.400	-14.029
Dell - Viper (Wired)	-15.484	1.31	343	-19.228	-11.740
Mamba (Wired) - Mamba (Wireless)	2.611	1.19	343	-0.809	6.032
Mamba (Wired) - Viper (Wired, light)	-2.819	1.17	343	-6.176	0.537
Mamba (Wired) - Viper (Wired)	-0.589	1.19	343	-4.009	2.832
Mamba (Wireless) - Viper (Wired, light)	-5.431	1.24	343	-8.987	-1.875
Mamba (Wireless) - Viper (Wired)	-3.200	1.26	343	-6.817	0.417
Viper (Wired, light) - Viper (Wired)	2.231	1.24	343	-1.325	5.787

Confidence level used: 0.95 Conf-level adjustment: tukey method for comparing a family of 6 estimates

Changing the reference level

If you want to change the reference level, you can

```
mouse <- mouse %>%
 mutate(Mouse = relevel(Mouse, ref = "Dell"))
m <- lm(Skill ~ Mouse, data = mouse)</pre>
summary(m)
Call:
lm(formula = Skill ~ Mouse, data = mouse)
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-25.5167 -3.3857
                   0.8143
                          5.1833 10.0143
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           27.402
                                       0.954 28.722 < 2e-16 ***
MouseBasilisk (Wired)
                            5.289
                                             4.065 5.95e-05 ***
                                       1.301
MouseMamba (Wired)
                           14.895
                                   1.240 12.009 < 2e-16 ***
MouseMamba (Wireless)
                           12.284
                                   1.306
                                              9 403 < 20-16 ***
MouseViper (Wired, light)
                          17.715
                                       1.286 13.776 < 2e-16 ***
                           15.484
                                       1.306 11.852 < 2e-16 ***
MouseViper (Wired)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6,678 on 343 degrees of freedom
```

Multiple R-squared: 0.4543, Adjusted R-squared: 0.4463

(HCI522@ISU)

(Almost) equivalence to our multiple group model

Recall that we had a multiple group model

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma_j^2)$$

for groups j = 0, 1, 2, ..., 5.

Our regression model is (almost) a reparameterization of the multiple group model:

Basilisk (Wired):	μ_0	$=\beta_0$
Viper (Wired, light):	μ_1	$=\beta_0+\beta_1$
Mamba (Wired):	μ_2	$=\beta_0+\beta_2$
Dell:	μ_3	$=\beta_0+\beta_3$
Viper (Wired):	μ_4	$=\beta_0+\beta_4$
Mamba (Wireless):	μ_5	$=\beta_0+\beta_5$

assuming the groups are labeled appropriately.

Summary

When you run a regression with a categorical variable, you are

- 1. Choosing one of the levels as the reference level.
- 2. Constructing dummy variables using indicator functions for all other levels, e.g.

 $X_i = I(\text{observation } i \text{ is } < \text{some non-reference level} >).$

3. Estimating the parameters of a multiple regression model using these dummy variables.