R06 - Logistic Regression

HCI/PSYCH 522 Iowa State University

March 31, 2022

(HCI522@ISU)

Overview

Individual data

- Bernoulli distribution
- Logistic regression model
- Admission as a function of GRE
- Grouped data
 - Binomial distribution
 - Logistic regression model
 - Probability of staying healthy as a function of Vitamin C intake
- Other examples
 - Probability of extinction as a function of island size
 - Cancer occurrence as a function of breast-feeding
 - Admission as a function of GRE, GPA, and school rank

Bernoulli Distribution

Let \boldsymbol{Y} be a random variable that indicates "success". For example,

- Winning a game
- Having fewer than 3 errors on a task
- Clicking on an ad

Then Y has a Bernoulli distribution with probability of success $0 < \theta < 1$ and we write $Y \sim Ber(\theta)$. The probability mass function is

$$P(Y = y) = \theta^y (1 - \theta)^{1-y}$$
 for $y = 0, 1$

and we can find that

$$E[Y] = \theta \quad \text{and} \quad Var[Y] = \theta(1-\theta).$$

Bernoulli pmf

Bernoulli pmf with probability of success 0.3

Bernoulli probability of success

Suppose the Bernoulli probability of success changes due to some other variable. For example,

- Time of day
- Sex/gender
- Length of a game

A logistic regression model allows the probability of success to change according to these independent variables.

Logistic regression model

For observation i, let

- Y_i be the indicator of success and
- X_i be the value of an independent variable.

The (simple) logistic regression model is

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i) \quad \text{where} \quad \log\left(\frac{\theta_i}{1-\theta_i}\right) = \beta_0 + \beta_1 X_i$$

In this model, $100(e^{\beta_1} - 1)$ is the percent change in the odds $\left(\frac{\theta}{1-\theta}\right)$ of success when the independent variable increases by 1.

admission <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
head(admission)</pre>

##		admit	gre	gpa	rank
##	1	0	380	3.61	3
##	2	1	660	3.67	3
##	3	1	800	4.00	1
##	4	1	640	3.19	4
##	5	0	520	2.93	4
##	6	1	760	3.00	2

summary(admission)

##	admit	gre	gpa	rank
##	Min. :0.0000	Min. :220.0	Min. :2.260	Min. :1.000
##	1st Qu.:0.0000	1st Qu.:520.0	1st Qu.:3.130	1st Qu.:2.000
##	Median :0.0000	Median :580.0	Median :3.395	Median :2.000
##	Mean :0.3175	Mean :587.7	Mean :3.390	Mean :2.485
##	3rd Qu.:1.0000	3rd Qu.:660.0	3rd Qu.:3.670	3rd Qu.:3.000
##	Max. :1.0000	Max. :800.0	Max. :4.000	Max. :4.000

(HCI522@ISU)


```
m <- glm(admit ~ gre, data = admission, family = binomial)
summarv(m)
##
## Call:
## glm(formula = admit ~ gre, family = binomial, data = admission)
##
## Deviance Residuals:
##
      Min
           10 Median
                                 30
                                         Max
## -1.1623 -0.9052 -0.7547 1.3486 1.9879
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.901344 0.606038 -4.787 1.69e-06 ***
## gre
           0.003582 0.000986 3.633 0.00028 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
```

(HCI522@ISU)

```
ci <- 100*(exp(confint(m)[2,])-1)
ci
## 2.5 % 97.5 %
## 0.1681375 0.5568193
```

For each 1 point increase in GRE score, the percent change in odds of admission is (0.168, 0.557)%.

```
ci <- 100*(exp(10*confint(m)[2,])-1)
ci
## 2.5 % 97.5 %
## 1.694153 5.709806
```

For each 10 point increase in GRE score, the percent change in odds of admission is (1.694, 5.71)%.

Grouped data

If the data are grouped, then the analysis is basically the same, but the mathematics and code look a bit different.

Sleuth3::ex2113 Dose Number WithoutIllness ProportionWithout ## 1158 ## 1 0.00 267 0.231 ## 2 0.25 331 74 0.224 0.236 ## 3 1.00 552 130 ## 4 2.00 308 65 0.211

Binomial Distribution

Let Y be a random variable the count of the number of "successes" in a group. For example,

- Number of games won
- Number of individuals having 3 or fewer errors on a task
- Number of visitors clicking on an ad

Then Y has a Binomial distribution with number of attempts n and probability of success $0 < \theta < 1$ and we write $Y \sim Bin(n, \theta)$. The probability mass function is

$$P(Y=y) = \binom{n}{y} \theta^y (1-\theta)^{1-y} \quad \text{for } y = 0, 1, \dots, n$$

and we can find that

$$E[Y] = n\theta$$
 and $Var[Y] = n\theta(1-\theta)$.

Binomial pmf

Binomial pmf with 14 attempts and probability of success 0.3

Binomial probability of success

Suppose the probability of success changes due to some other variable: For example,

- Time of day
- $\bullet \ Sex/gender$
- Length of a game

A logistic regression model allows the probability of success to change according to these independent variables.

Model

Logistic regression model

For group q, let

- n_a be the number of individuals in the group ,
- Y_a be the indicator of success, and
- X_a be the value of an independent variable associated with group g.

The (simple) logistic regression model is

$$Y_g \stackrel{ind}{\sim} Bin(n_g, heta_g) \quad ext{where} \quad \log\left(rac{ heta_g}{1- heta_g}
ight) = eta_0 + eta_1 X_g$$

In this model, $100(e^{\beta_1}-1)$ is the percent change in the odds $\left(\frac{\theta}{1-\theta}\right)$ of success when the independent variable increases by 1.

Vitamin C effect on incidence of colds

Sleuth3::ex2113

##		Dose	Number	WithoutIllness	ProportionWithout
##	1	0.00	1158	267	0.231
##	2	0.25	331	74	0.224
##	3	1.00	552	130	0.236
##	4	2.00	308	65	0.211

Vitamin C effect on incidence of colds

Randomized Experiment

Logistic regression model for proportion healthy

```
m <- glm(cbind(WithoutIllness, Number - WithoutIllness) ~ Dose,</pre>
        data = ex2113, family = binomial)
summarv(m)
##
## Call:
## glm(formula = cbind(WithoutIllness, Number - WithoutIllness) ~
##
      Dose, family = binomial, data = ex2113)
##
## Deviance Residuals:
                             3
##
        1
                   2
                                      4
## -0.06857 -0.27405 0.57021 -0.35303
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.20031 0.06167 -19.464 <2e-16 ***
## Dose
             -0.03465 0.07113 -0.487 0.626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Logistic regression model for proportion healthy

```
ci <- 100*(exp(confint(m)[2,])-1)
ci
## 2.5 % 97.5 %
## -16.09864 10.89977</pre>
```

Manuscript statement: Each gram increase in Vitamin C causes the odds of staying healthy to change by (-16, 11)%.

Vitamin C effect on incidence of colds

Randomized Experiment

Sleuth3::case2101

##		Island	Area	AtRisk	Extinct
##	1	Ulkokrunni	185.80	75	5
##	2	Maakrunni	105.80	67	3
##	3	Ristikari	30.70	66	10
##	4	Isonkivenletto	8.50	51	6
##	5	Hietakraasukka	4.80	28	3
##	6	Kraasukka	4.50	20	4
##	7	Lansiletto	4.30	43	8
##	8	Pihlajakari	3.60	31	3
##	9	Tyni	2.60	28	5
##	10	Tasasenletto	1.70	32	6
##	11	Raiska	1.20	30	8
##	12	Pohjanletto	0.70	20	2
##	13	Toro	0.70	31	9
##	14	Luusiletto	0.60	16	5
##	15	Vatunginletto	0.40	15	7
##	16	Vatunginnokka	0.30	33	8
##	17	Tiirakari	0.20	40	13


```
m <- glm(cbind(Extinct, AtRisk - Extinct) ~ Area,</pre>
       data = Sleuth3::case2101, family = binomial)
summarv(m)
##
## Call:
## glm(formula = cbind(Extinct, AtRisk - Extinct) ~ Area, family = binomial,
##
      data = Sleuth3::case2101)
##
## Deviance Residuals:
##
      Min
           10 Median 30
                                         Max
## -1.6526 -1.0661 -0.1877 1.0038
                                      2.1860
##
  Coefficients:
##
           Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.305957 0.117339 -11.130 < 2e-16 ***
## Area
              -0.010121 0.002684 -3.771 0.000163 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```


Sleuth3::ex2119 %>%
filter(Study == 5) %>%
mutate(p <- Cancer / (Cancer + NoCancer))
Study Lactate Cancer NoCancer p <- Cancer/(Cancer + NoCancer)
1 5 no 565 32693 0.01698839</pre>

-	-			01000	
2	5	yes	894	55735	0.01578696

##

```
m <- glm(cbind(Cancer, NoCancer) ~ Lactate,</pre>
        data = Sleuth3::ex2119 %>% filter(Study == 5),
        family = binomial)
summary(m)
##
## Call:
## glm(formula = cbind(Cancer, NoCancer) ~ Lactate, family = binomial,
      data = Sleuth3::ex2119 %>% filter(Study == 5))
##
##
## Deviance Residuals:
  [1] 0 0
##
##
  Coefficients:
##
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.05809 0.04243 -95.637 <2e-16 ***
## Lactateyes -0.07457 0.05419 -1.376 0.169
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```



```
m <- glm(cbind(Cancer, NoCancer) ~ Lactate + factor(Study),</pre>
         data = Sleuth3::ex2119.
         family = binomial)
summary(m)
##
## Call:
## glm(formula = cbind(Cancer, NoCancer) ~ Lactate + factor(Study),
       family = binomial, data = Sleuth3::ex2119)
##
##
## Deviance Residuals:
##
        Min
                         Median
                                        30
                                                 Max
  -1.70217 -0.57823 -0.00853
                                  0.47100
                                            1.43668
##
##
  Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                   -0.78029
                               0.05846 -13.348 < 2e-16 ***
                               0.02303 -4.751 2.02e-06 ***
## Lactateves
                   -0.10943
## factor(Study)2
                    0.21757
                               0.07050
                                         3.086 0.00203 **
## factor(Study)3
                    0.77526
                               0.10433
                                          7 431 1 080-13 ***
## factor(Study)4
                    0.91200
                               0.07044
                                         12.947 < 2e-16 ***
## factor(Study)5
                   -3.25657
                               0.06172 - 52.765
                                                < 2e-16 ***
## factor(Study)6
                    0.84493
                               0.08685
                                          9.729
                                                < 2e-16 ***
## factor(Study)7
                    0.12387
                               0.07045
                                          1.758
                                                0.07870 .
## factor(Study)8
                    0.83808
                               0.07203
                                         11.635 < 2e-16 ***
## factor(Studv)9
                    0.81036
                               0.06041
                                         13.414 < 2e-16 ***
## factor(Study)10 0.78969
                               0.06071
                                        13.008 < 2e-16 ***
```

(HCI522@ISU)

```
library("lme4")
m <- glmer(cbind(Cancer, NoCancer) ~ Lactate + (1|Study),</pre>
         data = Sleuth3::ex2119.
         family = binomial)
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
    Family: binomial (logit)
##
## Formula: cbind(Cancer, NoCancer) ~ Lactate + (1 | Study)
      Data: Sleuth3::ex2119
##
##
        AIC
                 BIC
                     logLik deviance df.resid
     248.5
              251.5 -121.2
                                242.5
##
##
## Scaled residuals:
        Min
                  10
                      Median
                                    30
                                            Max
## -1.69254 -0.60223 0.01219 0.44225 1.44836
##
## Bandom effects:
##
    Groups Name
                       Variance Std.Dev.
   Study (Intercept) 1.438
                               1.199
##
## Number of obs: 20, groups: Study, 10
##
## Fixed offects.
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.57534
                           0.37980 -1.515
                                               0.13
## Lactateves -0.10958
                           0.02303 -4.758 1.95e-06 ***
```

```
(HCI522@ISU)
```

Admission as a function of GRE, GPA, and school rank

```
m <- glm(admit ~ gre + gpa + factor(rank),</pre>
       data = admission, family = binomial)
summary(m)
##
## Call:
## glm(formula = admit ~ gre + gpa + factor(rank), family = binomial,
       data = admission)
##
##
## Deviance Residuals:
       Min
                 10 Median
                                   30
                                           Max
##
## -1.6268 -0.8662 -0.6388
                               1.1490
                                        2.0790
##
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
## gre
                  0.002264
                            0.001094
                                      2.070 0.038465 *
## gpa
                  0.804038
                            0.331819
                                      2.423 0.015388 *
## factor(rank)2 -0.675443 0.316490 -2.134 0.032829 *
## factor(rank)3 -1.340204
                            0.345306
                                      -3.881 0.000104 ***
## factor(rank)4 -1.551464
                            0.417832 -3.713 0.000205 ***
## ____
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
##
       Null deviance: 499.98 on 399 degrees of freedom
```

Summary

- Logistic regression
 - Dependent variable is a count with clear upper maximum
 - Interpret $100(e^{\beta_1}-1)$ as the percent change in odds