R10 - Logistic Regression

HCI/PSYCH 522 Iowa State University

April 14, 2022

Overview

- Individual data
 - Admission as a function of GRE and GPA
- Grouped data
 - Effect of moth color and distance on predation
 - $\bullet~+$ interaction between color and distance

Logistic regression model

For observation i, let

- Y_i be the indicator of success and
- $X_{i,p}$ be the value of the *p*th independent variable.

The (simple) logistic regression model is

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i) \quad \text{where} \quad = \log\left(\frac{\theta_i}{1-\theta_i}\right) = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}$$

In this model,

- e^{β_0} is the odds when all independent variables are zero and
- $100(e^{\beta_p} 1)$ is the percent increase in the odds $\left(\frac{\theta}{1-\theta}\right)$ of success when the *p*th independent variable increases by 1 holding other independent variables constant.

admission <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv") %>% select(-rank)
head(admission)

##		admit	gre	gpa
##	1	0	380	3.61
##	2	1	660	3.67
##	3	1	800	4.00
##	4	1	640	3.19
##	5	0	520	2.93
##	6	1	760	3.00

summary(admission)

##	admit	gre	gpa
##	Min. :0.0000	Min. :220.0	Min. :2.260
##	1st Qu.:0.0000	1st Qu.:520.0	1st Qu.:3.130
##	Median :0.0000	Median :580.0	Median :3.395
##	Mean :0.3175	Mean :587.7	Mean :3.390
##	3rd Qu.:1.0000	3rd Qu.:660.0	3rd Qu.:3.670
##	Max. :1.0000	Max. :800.0	Max. :4.000

(HCI522@ISU)

Admission

Here's code for a 3d interactive graphic. Unfortunately I can't figure out how to include it in the pdf.

plot_ly(admission, x = ~gre, y = ~gpa, z = ~admit, color = ~rank)

```
m <- glm(admit ~ I(gre-580) + I(gpa-3.4), data = admission, family = binomial)
summary(m)
##
## Call:
## glm(formula = admit ~ I(gre - 580) + I(gpa - 3.4), family = binomial,
##
      data = admission)
##
## Deviance Residuals:
##
      Min
          1Q Median 3Q Max
## -1.2730 -0.8988 -0.7206 1.3013
                                     2.0620
##
## Coefficients:
        Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.822846 0.112926 -7.287 3.18e-13 ***
## I(gre - 580) 0.002691 0.001057 2.544 0.0109 *
## I(gpa - 3.4) 0.754687 0.319586 2.361 0.0182 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Admission as a function of GRE

1/(1+exp(-coef(m)[1])) # probability of acceptance with GRE 580 and GPA 3.4

(Intercept) ## 0.3051598

1/(1+exp(-confint(m)[1,]))

2.5 % 97.5 % ## 0.2595473 0.3531931

100*(exp(coef(m)[-1])-1)

I(gre - 580) I(gpa - 3.4) ## 0.2694307 112.6945379

100*(exp(confint(m)[-1,])-1)

2.5 % 97.5 % ## I(gre - 580) 0.0637599 0.4803211 ## I(gpa - 3.4) 14.4251749 301.5376560

Interpretation

- With a GRE of 580 and GPA of 3.4, the probability of acceptance is 31% (26, 35).
- After adjusting for GPA, each 1 point increase in GRE score is associated with a 0.27% (0.06, 0.48) increase in the odds of acceptance.
- After adjusting for GPA, each 100 point increase in GRE score is associated with a 31% (7, 61) increase in the odds of acceptance.
- After adjusting for GRE, each 1 point increase in GPA score is associated with a 113% (14, 302) increase in the odds of acceptance.

Admission as a function of GRE

```
nd <- expand.grid(gre = seq(220,800,length=101), gpa = 2:4)
nd$p <- predict(m, newdata = nd, type="response")
ggplot(nd, aes(x = gre, y = p, color = gpa, group = gpa)) +
geom_line() +
labs(x = "GRE score", y = "Probability of acceptance", color = "GPA")</pre>
```

Admission as a function of GRE

Grouped data

If the data are grouped, then the analysis is basically the same, but the mathematics and code look a bit different.

## ##	8	light dark		60 60	9 16			
##	10	light dark light		60 60 84	16 23 20			
## ##	12 13	dark light	41.5 51.2	84 92	40 24			
##	14	dark	51 2 (HCI522@ISU)	92	20	R10 - Logistic Regression	April 14, 2022	12

Model

Logistic regression model

For group q, let

- n_q be the number of individuals in the group ,
- Y_a be the indicator of success, and
- X_a be the value of an independent variable associated with group g.

The (simple) logistic regression model is

$$Y_g \stackrel{ind}{\sim} Bin(n_g, \theta_g) \quad \text{where} \quad \log\left(\frac{\theta_g}{1-\theta_g}\right) = \beta_0 + \beta_1 X_{g,1} + \dots + \beta_p X_{g,p}$$

In this model.

- e^{β_0} is the odds when all independent variables are zero and
- $100(e^{\beta_p}-1)$ is the percent increase in the odds $\left(\frac{\theta}{1-\theta}\right)$ of success when the pth independent variable increases by 1 holding other independent variables constant.

Natural selection

Natural selection

Sleuth3::case2102

#	#		Morph	Distance	Placed	Removed
#	#	1	light	0.0	56	17
#	#	2	dark	0.0	56	14
#	#	3	light	7.2	80	28
#	#	4	dark	7.2	80	20
#	#	5	light	24.1	52	18
#	#	6	dark	24.1	52	22
#	#	7	light	30.2	60	9
#	#	8	dark	30.2	60	16
#	#	9	light	36.4	60	16
#	#	10	dark	36.4	60	23
#	#	11	light	41.5	84	20
#	#	12	dark	41.5	84	40
#	#	13	light	51.2	92	24
#	#	14	dark	51.2	92	39

Natural selection

Natural selection

Logistic regression model for proportion removed

```
m <- glm(cbind(Removed, Placed - Removed) ~ Distance + Morph,
        data = case2102, family = binomial)
summary(m)
##
## Call:
## glm(formula = cbind(Removed, Placed - Removed) ~ Distance + Morph.
##
      family = binomial, data = case2102)
##
## Deviance Residuals:
##
       Min
                  10 Median
                                      30
                                               Max
## -2.28292 -1.16122 0.00237 1.03757
                                          1.98945
##
  Coefficients:
##
##
           Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.732690 0.151221 -4.845 1.27e-06 ***
## Distance 0.005314 0.004002 1.328 0.18422
## Morphlight -0.404052 0.139377 -2.899 0.00374 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
           (HCI522@ISU)
                                          R10 - Logistic Regression
```

Natural selection

Logistic regression model for proportion removed

```
m <- glm(cbind(Removed, Placed - Removed) ~ Distance + Morph + Distance:Morph,
        data = case2102, family = binomial)
summarv(m)
##
## Call:
## glm(formula = cbind(Removed, Placed - Removed) ~ Distance + Morph +
##
      Distance:Morph, family = binomial, data = case2102)
##
## Deviance Residuals.
                 10 Median
##
       Min
                                     30
                                             Max
## -2.21183 -0.39883 0.01155
                                0.68292
                                        1.31242
##
  Coefficients:
##
##
                      Estimate Std. Error z value Pr(>|z|)
##
  (Intercept)
                     -1.128987 0.197906 -5.705 1.17e-08 ***
## Distance
                      0.018502 0.005645 3.277 0.001048 **
                     0.411257 0.274490 1.498 0.134066
## Morphlight
## Distance:Morphlight -0.027789 0.008085 -3.437 0.000588 ***
## ---
```

Plot with fitted lines

emtrends

```
em <- emmeans(m, ~ Morph, at = list(Distance = 15))
em_ci <- confint(em, type = "response")
em_ci</pre>
```

Morph prob SE df asymp.LCL asymp.UCL
dark 0.299 0.0273 Inf 0.248 0.355
light 0.298 0.0264 Inf 0.249 0.352
##
Confidence level used: 0.95
Intervals are back-transformed from the logit scale

```
et <- emtrends(m, ~ Morph, var = "Distance")
et_ci <- confint(et)
et ci</pre>
```

Morph Distance.trend SE df asymp.LCL asymp.UCL
dark 0.01850 0.00565 Inf 0.00744 0.02957
light -0.00929 0.00579 Inf -0.02063 0.00206
##
Confidence level used: 0.95

Manuscript statements

- At 15 km from Liverpool, both light and dark morphology had 30% (25, 36) removed.
- For dark morphology, each additional km away from Liverpool resulted in a 1.9% (0.7, 3) percent increase in odds.
- For light morphology, each additional km away from Liverpool resulted in a 0.9% (-0.2, 2.1) percent decrease in odds.

Summary

For binary data or counts with a clear upper maximum, logistic regression is an appropriate model.