R16 - Crossover designs

HCI/PSYCH 522 Iowa State University

May 5, 2022

https://en.wikipedia.org/wiki/Crossover_study

Definition

https://en.wikipedia.org/wiki/Crossover_study

Definition

- Crossover designs can increase precision and reduce costs
 - subjects being used as blocks

https://en.wikipedia.org/wiki/Crossover_study

Definition

- Crossover designs can increase precision and reduce costs
 - subjects being used as blocks
- Design to avoid confounding time period effects with treatments
 - each treatment in every period

https://en.wikipedia.org/wiki/Crossover_study

Definition

- Crossover designs can increase precision and reduce costs
 - subjects being used as blocks
- Design to avoid confounding time period effects with treatments
 - each treatment in every period
- Carryover effect can persist after the treatment period
 - increase washout period between treatment periods

https://en.wikipedia.org/wiki/Crossover_study

Definition

- Crossover designs can increase precision and reduce costs
 - subjects being used as blocks
- Design to avoid confounding time period effects with treatments
 - each treatment in every period
- Carryover effect can persist after the treatment period
 - increase washout period between treatment periods

Definition

A confounding variable is a variable the influences both the dependent and the independent variable.

Definition

A confounding variable is a variable the influences both the dependent and the independent variable.

##		period	sequence
##	1	I	А
##	2	II	В

Definition

A confounding variable is a variable the influences both the dependent and the independent variable.

##		period	sequence
##	1	I	А
##	2	II	В

In this example, period is a confounding variable since it determines the treatment order (A \rightarrow B) and (may) have an effect on the dependent variable.

Definition

A confounding variable is a variable the influences both the dependent and the independent variable.

##		period	sequence
##	1	I	А
##	2	II	В

In this example, period is a confounding variable since it determines the treatment order (A \rightarrow B) and (may) have an effect on the dependent variable. Treatment and period are said to be confounded with each other.

(HCI522@ISU)

Example balanced 3 treatment in 3 period design

Example balanced 3 treatment in 3 period design

##		period	seq1	seq2	seq3	seq4	seq5	seq6	
##	1	I	А	В	С	А	В	С	
##	2	II	В	С	А	С	А	В	
##	3	III	С	А	В	В	С	А	

Definition

A crossover design is balanced for carryover effects when each treatment follows each of the other treatments an equal number of times.

In general, an analysis of a crossover design wants to account for the following

- Fixed effects
 - treatment
 - period
 - carryover
 - sequence (= treatment:period interaction)

In general, an analysis of a crossover design wants to account for the following

- Fixed effects
 - treatment
 - period
 - carryover
 - sequence (= treatment:period interaction)
- Random effects
 - subject

In general, an analysis of a crossover design wants to account for the following

- Fixed effects
 - treatment
 - period
 - carryover
 - sequence (= treatment:period interaction)
- Random effects
 - subject

Simpler analyses are possible if you can assume negligible effects of

- sequence
- carryover

In general, an analysis of a crossover design wants to account for the following

- Fixed effects
 - treatment
 - period
 - carryover
 - sequence (= treatment:period interaction)
- Random effects
 - subject

Simpler analyses are possible if you can assume negligible effects of

- sequence
- carryover

But these assumptions may be dubious.

- ## period seqAB seqBA
 ## 1 I A B
- ## 2 II B A

Consider a regression model with period, treatment, sequence, and carryover.

##		period	seqAB	seqBA
##	1	I	А	В
##	2	II	В	А

Consider a regression model with period, treatment, sequence, and carryover. You will have the following terms

- Intercept (reference level: I, A, AB, carryover from A)
- Indicator for period II
- Indicator for treatment B
- Indicator for sequence BA
- Indicator for carryover from B

##		period	seqAB	seqBA
##	1	I	А	В
##	2	II	В	А

Consider a regression model with period, treatment, sequence, and carryover. You will have the following terms

- Intercept (reference level: I, A, AB, carryover from A)
- Indicator for period II
- Indicator for treatment B
- Indicator for sequence BA
- Indicator for carryover from B

Since there are only 4 combinations of period and treatment, we only have 4 means.

##		period	seqAB	seqBA
##	1	I	А	В
##	2	II	В	А

Consider a regression model with period, treatment, sequence, and carryover. You will have the following terms

- Intercept (reference level: I, A, AB, carryover from A)
- Indicator for period II
- Indicator for treatment B
- Indicator for sequence BA
- Indicator for carryover from B

Since there are only 4 combinations of period and treatment, we only have 4 means. Thus, we cannot estimate all of the terms in this model.

Extra Period Design

##		period	seqABB	seqBAA
##	1	I	А	В
##	2	II	В	А
##	3	III	В	А

Consider a regression model with period, treatment, sequence, and carryover.

Extra Period Design

##		period	seqABB	seqBAA
##	1	I	А	В
##	2	II	В	А
##	3	III	В	А

Consider a regression model with period, treatment, sequence, and carryover. You will have the following terms

- Intercept (reference level: I, A, AB, carryover from A)
- Indicators for period II and III
- Indicator for treatment B
- Indicator for sequence BA
- Indicator for carryover from B

Extra Period Design

##		period	seqABB	seqBAA
##	1	I	А	В
##	2	II	В	А
##	З	III	В	А

Consider a regression model with period, treatment, sequence, and carryover. You will have the following terms

- Intercept (reference level: I, A, AB, carryover from A)
- Indicators for period II and III
- Indicator for treatment B
- Indicator for sequence BA
- Indicator for carryover from B

Since we now have 6 means we can estimate all of the terms in this model.

R Code for Extra Period Design

```
library(lme4) # library(lmerTest)?
m < - lmer(v ~
            # fixed effects
            treatment + period + sequence +
            carryover + # carryover missing in first period
            # random effect
            (1 subject).
          data = d)
anova(m) # Type III ?
em <- emmeans(m, pairwise ~ treatment) # ??
confint(em) # ??
```