# M5S2 - Confidence Intervals

for population mean with population standard deviation unknown

Professor Jarad Niemi

STAT 226 - Iowa State University

October 11, 2018

### Outline

- Confidence intervals for the population mean when the population standard deviation is unknown
  - t distribution
  - Finding t critical values
  - significance level
  - confidence level
  - margin of error

#### Confidence intervals when $\sigma$ is known

Recall that by the CLT

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{.}{\sim} N(0, 1)$$

where  $\overline{X}$  is the (random) sample mean,  $\mu$  is the population mean,  $\sigma$  is the population standard deviation, and n is the sample size.

When the population standard deviation  $\sigma$  is known, we used this result to construct a  $100(1-\alpha)\%$  confidence interval for the population mean  $\mu$  using the formula

$$\overline{x} \pm z_{\alpha/2} \frac{\partial}{\sqrt{n}}$$

where the z critical value is such that  $P(Z > z_{\alpha/2}) = \alpha/2$  for a given significance level  $\alpha$ .

If  $\sigma$  is unknown, then we can't use  $\sigma$  to calculate this interval.

### Replace $\sigma$ with s, the sample standard deviation

If  $X_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$ , we have a similar result when using the sample standard deviation,

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

instead of  $\sigma$ :

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

where  $t_{n-1}$  is a Student's t distribution with n-1 degrees of freedom.

For a  $100(1-\alpha)\%$  confidence interval, we can find a t critical value  $t_{n-1,\alpha/2}$  and construct the confidence interval using the following formula:

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

for the observed sample mean  $\overline{x}$  and sample standard deviation s.

## Student's *t*-distribution

Student's t-distribution was derived by William Gosset, a statistician working for the Guiness Brewing Company. A random variable T has a (standard) t-distribution with  $\nu$  degrees of freedom if it has the pdf

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \ \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

where  $\Gamma(x) = \int_0^\infty a^{x-1} e^a da$  and

٠

• 
$$E[T] = 0$$
 for  $\nu > 1$  and

• 
$$Var[T] = \frac{\nu}{\nu - 2}$$
 for  $\nu > 2$ .

A (standard) t-distribution converges to a standard normal distribution as  $\nu \to \infty$ .

## Student's *t*-distribution pdf



#### Finding t critical values

A t critical value  $t_{\nu,\alpha/2}$  is the value such that

 $P(T_{\nu} > t_{\nu,\alpha/2}) = \alpha/2$ 

where  $T_{\nu}$  is the *t*-distribution with  $\nu$  degrees of freedom.



t10 distribution

t-table



#### TABLE D t distribution critical values

| df   | Upper tail probability p |       |       |       |       |       |       |       |       |       |       |       |
|------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | .25                      | .20   | .15   | .10   | .05   | .025  | .02   | .01   | .005  | .0025 | .001  | .0005 |
| 1    | 1.000                    | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636.0 |
| 2    | 0.816                    | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.6  |
| 3    | 0.765                    | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.93 |
| 4    | 0.741                    | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |
| 5    | 0.727                    | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.86  |
| 6    | 0.718                    | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.95  |
| 7    | 0.711                    | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.40  |
| 8    | 0.706                    | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.04  |
| 9    | 0.703                    | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.78  |
| 10   | 0.700                    | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.58  |
| 11   | 0.697                    | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.43  |
| 12   | 0.695                    | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.31  |
| 13   | 0.694                    | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.22  |
| 14   | 0.692                    | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.14  |
| 15   | 0.691                    | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.07  |
| 16   | 0.690                    | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.01  |
| 17   | 0.689                    | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.96  |
| 18   | 0.688                    | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.611 | 3.92  |
| 19   | 0.688                    | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.88  |
| 20   | 0.687                    | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.85  |
| 21   | 0.686                    | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.81  |
| 22   | 0.686                    | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.79  |
| 23   | 0.685                    | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.76  |
| 24   | 0.685                    | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.74  |
| 25   | 0.684                    | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.72  |
| 26   | 0.684                    | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3,435 | 3.70  |
| 27   | 0.684                    | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.69  |
| 28   | 0.683                    | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3,408 | 3.67  |
| 29   | 0.683                    | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.65  |
| 30   | 0.683                    | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.64  |
| 40   | 0.681                    | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.55  |
| 50   | 0.679                    | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.109 | 2,403 | 2.678 | 2.937 | 3.261 | 3.49  |
| 60   | 0.679                    | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.46  |
| 80   | 0.678                    | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.41  |
| 100  | 0.677                    | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.39  |
| 1000 | 0.675                    | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.30  |
| z*   | 0.674                    | 0.841 | 1.036 | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091 | 3.29  |
|      | 50%                      | 60%   | 70%   | 80%   | 90%   | 95%   | 96%   | 98%   | 99%   | 99.5% | 99.8% | 99.94 |

#### Confidence Intervals for $\mu$ when $\sigma$ is unknown

#### Definition

Let  $\mu$  be the population mean and  $\sigma$  be the unknown population standard deviation for a normal population. Choose a significance level  $\alpha$  which you can convert to a confidence level  $C = 100(1 - \alpha)\%$  and a t critical value  $t_{n-1,\alpha/2}$  where  $P(T_{n-1} > t_{n-1,\alpha/2}) = \alpha/2$ .

You obtain a random sample of n observations from the population and calculate the sample mean  $\overline{x}$  and sample standard deviation s. Then a  $C = 100(1 - \alpha)\%$  confidence interval for  $\mu$  is

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = \left(\overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}\right)$$

where  $t_{n-1,\alpha/2} \cdot s/\sqrt{n}$  is called the margin of error.

#### Savings account balances

US Bank provides students with savings accounts having no monthly maintenance fee and a low minimum monthly transfer. US Bank is interested in knowing the mean monthly balance of all its student savings accounts. They take a random sample of 23 student savings accounts and record that at the end of the month the sample mean savings was \$105 and the standard deviation was \$20. Assuming savings account balances are normally distributed, construct an 80% confidence interval for the mean monthly balance.

Let  $X_i$  be the end of the month balance for student i. Then  $E[X_i] = \mu$ , the mean monthly balance, is unknown,  $SD[X_i] = \sigma$  is unknown. We obtained a sample of size n = 23 with a sample mean  $\overline{x} = \$105$  and a sample standard deviation of s = \$20. For a confidence level of 80%, we have  $\alpha = 0.2$ ,  $\alpha/2 = 0.1$  and  $t_{n-1,\alpha/2} \approx 1.321$ . Then we calculate

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = \$105 \pm 1.321 \frac{\$20}{\sqrt{23}} = (\$99.5,\$110.5)$$

Professor Jarad Niemi (STAT226@ISU)