M7S2 - Regression Line

Professor Jarad Niemi

STAT 226 - Iowa State University

November 15, 2018

Professor Jarad Niemi (STAT226@ISU)

Outline

- Regression line
 - Residual
 - Sample intercept and interpretation
 - Sample slope and interpretation

Interpreting

Interpreting a line

Suppose there is a line

$$y = m \cdot x + b$$

Interpret

• b: is the y-intercept, i.e. the value of y when x = 0

• m: is the slope, i.e. the change in y for each unit change in x If x increases by one unit, then y changes by

$$\begin{split} & m \cdot (x+1) + b - (m \cdot x + b) \\ & = m \cdot x + m + b - m \cdot x - b \\ & = m \end{split}$$

Finding

Finding the line

Finding

Finding the line

$$y = 5x + 10$$

M7S2 - Regression Line

Finding

Finding the line

Finding

Finding the line

$$y = -3x + -6$$

Professor Jarad Niemi (STAT226@ISU)

M7S2 - Regression Line

Noisy data

When the data are noisy, finding the line is not so easy

Noisy data

When the data are noisy, finding the line is not so easy

Residuals

Definition

A prediction equation is given by

$$\hat{y} = b_0 + b_1 \cdot x$$

where \hat{y} is the predicted value of y for a specified value of x for some intercept b_0 and slope b_1 . For a collection of observations (x_i, y_i) for $i = 1, \ldots, n$, we can calculate the predicted value for each observation, i.e.

$$\hat{y}_i = b_0 + b_1 \cdot x_i$$

The residual, r_i , for an observation is the observed value minus the predicted value, i.e.

$$r_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 \cdot x_i) = y_i - b_0 - b_1 \cdot x_i$$

The residual is the vertical distance from the observation to the line.

Residuals

Residuals graphically

Regression line

Definition

The (least squares) regression line is the value for b_0 and b_1 in the prediction equation that minimizes the sum of the squared residuals, i.e. minimizes

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 \cdot x_i)^2$$

We call

- b_0 the sample intercept and
- b_1 the sample slope.

Sometimes the regression line is referred to as the prediction line.

https://gallery.shinyapps.io/simple_regression/

Speed vs stopping distance of cars

We run an experiment where we record

- the speed (mph) a car is going and
- the distance (ft) it takes for the car to stop.

We are interested in constructing a regression line to understand the relationship between speed and distance.

Let

- the explanatory variable be the speed and
- the response be the distance.

Example

Speed vs stopping distance graphically

Estimated intercept and slope

```
Call:
lm(formula = dist ~ speed, data = cars)
Coefficients:
(Intercept) speed
-17.579 3.932
```

Thus the regression line is (approximately)

 $\hat{y} = -18 + 4 \cdot x$

where

- x represents speed (mph) and
- y represents distance (ft).

Interpretation

Interpretation

Definition

The sample intercept (b_0) is the predicted value of the response, i.e. \hat{y} , when the explanatory variable (x) is zero, i.e. x = 0. The sample slope (b_1) is the predicted change in the response when the explanatory variable increases by one unit.

Notes:

- The intercept may not be meaningful.
- A positive slope, $b_1 > 0$, indicates a positive direction (r > 0).
- A negative slope, $b_1 < 0$, indicates a negative direction (r < 0).

Speed vs stopping distance of cars

Thus the regression line is (approximately)

 $\hat{y} = -18 + 4 \cdot x$

where

- x represents speed (mph) and
- y represents distance (ft).

Thus

- The predicted stopping distance of a car at 0 mph is -18 ft. This is not meaninful!
- For each additional mile per hour the car is traveling, the predicted additional distance to stop is 4 ft.