M8S3 - Applied Regression

Professor Jarad Niemi

STAT 226 - Iowa State University

December 6, 2018

Regression analysis procedure

- 1. Determine scientific question, i.e. why are you collecting data
- 2. Collect data (at least two variables per individual)
- 3. Identify explanatory and response variables
- 4. Plot the data
- 5. Run regression
- 6. Assess regression assumptions
- 7. Interpret regression output

Two examples:

- Inflation vs Unemployment
- Frozen Foods: Sales vs Visibility

Inflation vs Unemployment

Definition

Inflation is a systained increase in the price level of goods and services in an economy over a period of time and is calculated by taking the average cost of goods in one period subtracting the average cost of goods in the previous period and then dividing by the average cost of goods in the previous period. Unemployment percentage is calculated by dividing the number of unemployed individuals by all individuals currently in the labor force.

Scientific question:

- What is the relationship between inflation and unemployment?
- Economic theory suggests lower unemployment leads to higher inflation. Is there evidence in the U.S. to support this theory?

Data

Obtained from https://www.bls.gov/:

<				
•	Year	month	inflation	unemployment
1	1948	Jan	0.0112676056	3.4
2	1948	Feb	-0.008522727	3.8
3	1948	Mar	-0.002849003	4
4	1948	Apr	0.0140449438	3.9
5	1948	May	0.0069735007	3.5
6	1948	Jun	0.0069252078	3.6
7	1948	Jul	0.0123119015	3.6
8	1948	Aug	0.0040871935	3.9
9	1948	Sep	0	3.8
10	1948	Oct	-0.004103967	3.7
11	1948	Nov	-0.006887052	3.8
12	1948	Dec	-0.006934813	4
13	1949	Jan	-0.001388889	4.3
14	1949	Feb	-0.011235955	4.7

Plot

4 L	Linear Fit								
int	inflation = 0.0023679 + 7.2832e-5*unemployment								
Δ	✓ Summary of Fit								
	RSquare		0.001076						
	RSquare Adj		-0.0001						
	Root Mean Squa	re Error	0.003636						
	Mean of Respon	se	0.002788						
	Observations (or	r Sum Wgts)	850						
Þ	Lack Of Fit								
Þ	Analysis of \	/ariance							
Δ	Parameter E	stimates							
	Term	Estimate	Std Error	t Ratio	Prob> t				
	Intercept	0.0023679	0.000457	5.18	<.0001*				
	unemployment	7.2832e-5	7.621e-5	0.96	0.3395				

Confidence intervals

Critical value for 80% confidence interval

 $t_{848,0.1} < t_{100,0.1} = 1.29$

Intercept

```
0.0023679 \pm 1.29 \times 0.000457 = (0.0018, 0.0030)
```

Interpretation: We are 80% confident that the true mean inflation at 0% unemployment is between 0.0018 and 0.0030. Slope

 $0.000072832 \pm 1.29 \times 0.00007621 = (-0.000025, 0.000171)$

Interpretation: We are 80% confident that the true mean increase in inflation for each percent increase in unemployment is between -0.000025 and 0.000171.

Default hypothesis tests

Default intercept hypothesis test:

 $H_0: \beta_0 = 0 \qquad \text{vs} \qquad H_a: \beta_0 \neq 0$

- *p*-value < 0.0001
- Decision: Reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is statistically significant evidence that, at an unemployment rate of 0%, that mean inflation is not 0.

Default slope hypothesis test:

$$H_0: \beta_1 = 0$$
 vs $H_a: \beta_1 \neq 0$

• p-value = 0.3395

- Decision: Fail to reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is insufficient evidence to conclude that, for each % increase in unemployment, the mean change in inflation is not 0.

Professor Jarad Niemi (STAT226@ISU)

M8S3 - Applied Regression

Hypothesis tests

Scientific question: Economic theory suggests lower unemployment leads to higher inflation. Is there evidence in the U.S. to support this theory?

Hypothesis test:

$$H_0:\beta_1=0 \qquad \text{vs} \qquad H_a:\beta_1<0$$

The point estimate for the slope (7.3e-5) is not consistent with this alternative hypothesis. Thus to calculate the *p*-value, we divide the given *p*-value by 2 and then subtract the result from 1.

- *p*-value is $1 (0.3395/2) \approx 0.83$
- Decision: Fail to reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is insufficient evidence to conclude that, for each % increase in unemployment, the mean change in inflation is less than 0.

Sales vs Visibility

Definition

Item_Outlet_Sales is the sales revenue for the particular product at a particular outlet for a given period of time. Item_Visibility is the % of total display area of all products in a store allocated to the particular product.

Scientific question:

- What is the relationship between visibility and sales for frozen foods?
- Marketing theory suggests that increased visibility should increase sales.

Data

Obtained from https://datahack.analyticsvidhya.com/contest/ practice-problem-big-mart-sales-iii/:

•								Outlet Establish		Outlet Location		
	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	ment_Year	Outlet_Size	Туре	Outlet_Type	Item_Outlet_Sales
1	FDH17	16.2	Regular	0.016687114	Frozen Foods	96.9726	OUT045	2002	NA	Tier 2	Supermarket	1076.5986
2	FDU28	19.2	Regular	0.09444959	Frozen Foods	187.8214	OUT017	2007	NA	Tier 2	Supermarket	4710.535
3	FDR28	13.85	Regular	0.025896485	Frozen Foods	165.021	OUT046	1997	Small	Tier 1	Supermarket	4078.025
4	FDC29	8.39	Regular	0.024205661	Frozen Foods	114.0176	OUT046	1997	Small	Tier 1	Supermarket	2290.352
5	FDL04	19	Low Fat	0.112556507	Frozen Foods	104.9622	OUT017	2007	NA	Tier 2	Supermarket	1587.933
6	FDN04	11.8	reg	0.014087057	Frozen Foods	180.3344	OUT046	1997	Small	Tier 1	Supermarket	1427.4752
7	FDU04		Low Fat	0.009714595	Frozen Foods	120.0414	OUT019	1985	Small	Tier 1	Grocery Store	487.3656
8	FDF41	12.15	Low Fat	0.131383762	Frozen Foods	246.046	OUT049	1999	Medium	Tier 1	Supermarket	1231.73
9	FDT28	13.3	Low Fat	0.063695084	Frozen Foods	151.0708	OUT045	2002	NA	Tier 2	Supermarket	1805.6496
10	FDS52	8.89	low fat	0.005505481	Frozen Foods	102.4016	OUT017	2007	NA	Tier 2	Supermarket	2732,4432
11	FDD17	7.5	Low Fat	0.032677678	Frozen Foods	239.0906	OUT049	1999	Medium	Tier 1	Supermarket	5942.265
12	FDL40	17.7	Low Fat	0.01161096	Frozen Foods	95.041	OUT035	2004	Small	Tier 2	Supermarket	868.869
10	rocco	0.00	1 P. 1	0.0001/001/	e e i	101 7010	010010	1000	***	T 5	0 0	101 2010

Sales vs Visibility

Plot

Plot

Sales vs Visibility

Residuals

Professor Jarad Niemi (STAT226@ISU)

Clear violation of normality. This pattern indicates right-skewed residuals. To analyze these data, you should take the logarithm of the response, but we will proceed with the analysis as is.

4

L	Linear Fit									
lte	Item_Outlet_Sales = 2439.0525 - 3923.0176*Item_Visibility									
⊿	⊿ Summary of Fit									
	RSquare		0.007636	0.007636						
	RSquare Adj		0.006327	0.006327						
	Root Mean Squ	uare Error	1703.866	1703.866						
	Mean of Respo	onse	2191.78	2191.78						
	Observations (or Sum Wgts) 760	760						
Þ	Analysis of	Variance								
⊿	⊿ Parameter Estimates									
	Term	Estimate	Std Error	t Ratio	Prob> t					
	Intercept 2439.0525		119.5942	20.39	<.0001*					
	Item_Visibility	-3923.018	1624.367	-2.42	0.0160*					

Confidence intervals

Critical value for 95% confidence interval

 $t_{758,0.1} < t_{100,0.1} = 1.984$

Intercept

```
2439.0525 \pm 1.984 \times 119.5942 \approx (2200, 2680)
```

Interpretation: We are 95% confident that the true mean sales when visibility is 0, i.e. no product is visible, is between \$2200 and \$2608.

Slope

```
-3923.018 \pm 1.984 \times 1624.367 = (-7150, -700)
```

Interpretation: We are 95% confident that the true mean increase in sales for each % increase in visibility is between -\$7150 and -\$700.

Default hypothesis tests

Default intercept hypothesis test:

$$H_0: \beta_0 = 0 \qquad \text{vs} \qquad H_a: \beta_0 \neq 0$$

- *p*-value < 0.0001
- Decision: Reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is statistically significant evidence that, at a visibility of 0, mean sales is not 0.

Default slope hypothesis test:

$$H_0: \beta_1 = 0$$
 vs $H_a: \beta_1 \neq 0$

• p-value = 0.0160

- Decision: Reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is statistically significant evidence that, for each % increase in visibility, the mean change in sales is not 0.

Professor Jarad Niemi (STAT226@ISU)

M8S3 - Applied Regression

Hypothesis tests

Scientific question: Marketing theory suggests that increased visibility should increase sales.

Hypothesis test:

$$H_0:\beta_1=0 \qquad \text{vs} \qquad H_a:\beta_1>0$$

The point estimate for the slope (-3923) is not consistent with this alternative hypothesis.

- *p*-value is $1 (0.016/2) \approx 0.99$
- Decision: Fail to reject H_0 at level $\alpha = 0.05$.
- Conclusion: There is insufficient evidence to conclude that, for each % increase in visibility, the mean change in sales is greater than 0.