For the following hypotheses and observed data, calculate the *t*-statistic and pvalue. Throughout μ is the population mean.

1. $H_0: \mu = 0$ vs $H_a: \mu \neq 0$ with n = 13, $\overline{x} = 4.94$, and s = 10. Answer:

$$t = \frac{4.94 - 0}{10/sqrt13} = 1.781$$

since $H_a: \mu \neq 0$, we have

$$p$$
-value = $2P(T_{12} > |1.781|) \approx 2 \cdot 0.05 = 0.1$

2. $H_0: \mu = 7$ vs $H_a: \mu < 7$ with $n = 24, \overline{x} = 4.08$, and s = 5.98. Answer:

$$t = \frac{4.08 - 7}{5.98/sqrt24} = -3.487$$

since $H_a: \mu < 7$, we have

$$p$$
-value = $P(T_{23} > | -3.487 |) \approx 0.001$

3. $H_0: \mu \leq -3$ vs $H_a: \mu > -3$ with n = 51, $\overline{x} = -1.63$, and s = 9.34. Answer:

$$t = \frac{1.63 - (-3)}{9.34/sqrt(51)} = 1.047$$

since $H_a: \mu > -3$, we have

$$p$$
-value = $P(T_{50} > 1.047) = 0.15$