
Spring 2015 Statistics 544 Midterm Exam
(100 points)

Please write your first and last name here:

Name

Instructions:

� Do NOT open the exam until instructed to do so!

� Please check to make sure you have 3 pages with writing on the front and back (pages
may be marked ’intentionally left blank’). Feel free to remove (and keep) pages after
number 6.

� On the following pages you will find short answer questions related to the topics we
covered in class for a total of 100 points. Please read the directions carefully.

� You are allowed to use a calculator and one 81
2
× 11 sheet of paper with writing on

both front and back.

� You will be given only the time allotted for the course; no extra time will be given.
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1. A hit-and-run taxi accident occurs at dusk in a city that has 90% black taxis, 5% green
taxis, and 5% red taxis. The only eyewitness has told investigators that he believes
the taxi was red. Investigators test the eyewitness’s vision in this low light scenario
and find the following identification probabilities, e.g. if the taxi was actually green,
the eyewitness identified it as being black 20% of the time.

Truth
Identification Black Green Red

Black 0.8 0.2 0.1
Green 0.1 0.7 0.4
Red 0.1 0.1 0.5

(a) Calculate the probability the car was black. (5 pts)

Let B,G,R indicate the car was truly blue, green, or red, respectively. Then let
IR indicate that the eyewitness identified the car as red. First calculate

P (IR) = P (IR|B)P (B)+P (IR|G)P (G)+P (IR|R)P (R) = .1×.9+.1×.05+.5×.05 = 0.12

P (B|IR) =
P (IR|B)P (B)

P (IR)
= .1× .9/.12 ≈ 0.75

(b) Calculate the probability the car was green. (5 pts)

P (G|IR) =
P (IR|G)P (G)

P (IR)
= .1× .05/.12 ≈ 0.04

(c) Calculate the probability the car was red. (5 pts)

P (R|IR) =
P (IR|R)P (R)

P (IR)
= .5× .05/.135 ≈ 0.21

(d) Suppose there was a different eyewitness, fill in their identification probabilities so
that, if they said the taxi was red, the probability that the car was red is greater
than the probabilities that the car was green or black. (5 pts)

The easiest way is to make the eyewitness perfect, i.e. P (IB|B) = P (IG|G) =
P (IR|R) = 1.
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Truth
Identification Black Green Red

Black
Green
Red

2. Let Y ∼ Geo(θ), i.e. a geometric random variable with probability of success θ and
E[y] = 1

θ
. The geometric probability mass function is

p(y|θ) = (1− θ)y−1θ, y ∈ {1, 2, 3, . . .}, 0 < θ < 1

(a) Derive Jeffreys prior for θ and determine whether this prior is proper. (10 pts)

The geometric is an exponential family, thus we have

log p(y|θ) = (y − 1) log(1− θ) + log(θ)

d

dθ
log p(y|θ) = −y − 1

1− θ
+

1

θ
d2

dθ2
log p(y|θ) = − y − 1

(1− θ)2
− 1

θ2

I(θ) =− Ey
[
d2

dθ2
log p(y|θ)

]
= −Ey[y]− 1

(1− θ)2
− 1

θ2

=
1
θ
− 1

(1− θ)2
+

1

θ2

= θ−2(1− θ)−1

p(θ) ∝
√
I(θ) = θ−1(1− θ)−1/2

as this would be a Be(0, 1/2) it is not proper.

(b) Derive the posterior under Jeffreys prior with n independent observations (y1, . . . , yn)
and determine when it is proper. (10 pts)

p(θ|y) ∝ p(y|θ)p(θ)

=

[
n∏
i=1

(1− θ)y−1θ

]
θ−1(1− θ)−1/2

= θn−1(1− θ)n(y−1)+ 1
2
−1

This is the kernel of a Be(n, n(y−1)+1/2) which is proper so long as n > 0 since
y ≥ 1.

3



(c) Derive the posterior predictive mass function for a new single observation ỹ ∼
Geo(θ), conditionally independent of the previous observations. Make sure to
indicate the support. (10 pts)

The support is ỹ ∈ {1, 2, 3, . . .}.

p(ỹ|y)

∫
p(ỹ|θ)p(θ|y)dθ

=

∫
(1− θ)ỹ−1θ

θn−1(1− θ)n(y−1)+ 1
2
−1

B(n, n(y − 1) + 1/2)
dθ

=
1

B(n, n(y − 1) + 1/2)

∫
θn+1−1(1− θ)n(y−1)+ỹ− 1

2
−1dθ

=
B(n+ 1, n(y − 1) + ỹ − 1/2)

B(n, n(y − 1) + 1/2)

where
1

B(α, β)
=

Γ(α + β)

Γ(α)Γ(β)

This is the beta negative binomial distribution.

(d) Based on the data y = (y1, . . . , yn), describe a procedure to simulate K replicate
data sets to be used in a posterior predictive check. (10 pts)

Note that

p(yrep|y) =

∫ [ n∏
i=1

p(yrepi |θ)

]
p(θ|y)dθ

So the following is a an appropriate procedure:

1. For k = 1, . . . , K,

a. Simulate θ(k) ∼ p(θ|y), if we use Jeffreys prior, it is Be(n, n(y − 1) + 1/2).

b. For i = 1, . . . , n, simulate ỹ
(k)
i ∼ Geo

(
θ(k)
)
.
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3. For the following questions, please refer to the two pages on “Stan”.

(a) Using statistical notation, write down model 1. (5 pts)

Yi
ind∼ N(µ, σ2), i = 1, . . . , n p(µ, σ2) ∝ IG(σ2; 1, 1)

(b) Using statistical notation, write down model 2. (5 pts)

Yi
ind∼ N(µ, σ2), i = 1, . . . , n p(µ, σ) ∝ Ca+(σ; 0, 1)

(c) Provide a 95% credible interval for the data mean and standard deviation from
model 1. (5 pts)

� mean (0.69, 1.29)

� standard deviation (0.31,0.71)

(d) Provide a 95% credible interval for the data mean and standard deviation from
model 2. (5 pts)

� mean (0.93,1.04)

� standard deviation (0.05,0.14)
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(e) Which prior for the standard deviation is more reasonable and why? (5 pts)

The inverse gamma distribution has a region near zero that has extremely low
density. This is causing severe bias in estimation for σ in model 1 and thus model
2 is preferred.

(f) Derive the conditional posterior for the mean given the standard deviation, i.e.
p(µ|σ, y) where y = (y1, . . . , yn). Name the distribution family and its parameters.
(10 pts)

This is just normal data with an unknown mean but known variance.

p(µ|σ, y) =

[
n∏
i=1

N(yi|µ, σ2)

]
× 1

∝ exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= exp

(
− 1

2σ2

[
nµ2 − 2µny

])
= exp

(
− 1

2σ2/n

[
µ2 − 2µy

])
This is the kernel of a normal distribution with mean y and variance σ2/n, thus
µ|σ2, y ∼ N(y, σ2/n).

(g) Based on this conditional posterior, explain why the credible interval for the mean
in model 1 is so much wider than in model 2. (5 pts)

In model 1, σ is estimated to be much larger than in model 2. Thus the credible
interval for µ, which is y±1.96σ2/n (if σ2 were known), will be wider. (Of course,
the marginal uncertainty for µ will incorporate the uncertainty in σ. But the
uncertainty in σ is small compared with the estimation bias.)
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A Stan

model1 = "
data {
int<lower=1> n;
real y[n];

}
parameters {
real mu;
real<lower=0> tau;

}
transformed parameters {
real<lower=0> sigma;
sigma <- 1/sqrt(tau);

}
model {
tau ~ gamma(1,1);
y ~ normal(mu,sigma);

}
"

model2 = "
data {
int<lower=1> n;
real y[n];

}
parameters {
real mu;
real<lower=0> sigma;

}
model {
sigma ~ cauchy(0,1);
y ~ normal(mu,sigma);

}
"

m1 = stan_model(model_code=model1)
m2 = stan_model(model_code=model2)
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Stan (continued)

dat = list(n=length(y), y=y)

r1 = sampling(m1, dat, c("mu","sigma"), seed=1)

r2 = sampling(m2, dat, c("mu","sigma"), seed=1)

r1

## Inference for Stan model: e3b63a84f14810e53fdeb3aac91e6aec.

## 4 chains, each with iter=2000; warmup=1000; thin=1;

## post-warmup draws per chain=1000, total post-warmup draws=4000.

##

## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

## mu 0.93 0.00 0.15 0.63 0.84 0.93 1.03 1.24 1963 1

## sigma 0.47 0.00 0.11 0.31 0.39 0.45 0.52 0.74 1525 1

## lp__ 3.44 0.03 1.11 0.39 3.03 3.78 4.21 4.50 1091 1

##

## Samples were drawn using NUTS(diag_e) at Mon Jan 11 11:47:52 2016.

## For each parameter, n_eff is a crude measure of effective sample size,

## and Rhat is the potential scale reduction factor on split chains (at

## convergence, Rhat=1).

r2

## Inference for Stan model: afd6240a58bdfffc484662e4455f9b83.

## 4 chains, each with iter=2000; warmup=1000; thin=1;

## post-warmup draws per chain=1000, total post-warmup draws=4000.

##

## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

## mu 0.93 0.00 0.04 0.86 0.91 0.93 0.95 1.00 1607 1

## sigma 0.11 0.00 0.03 0.07 0.09 0.10 0.12 0.19 1481 1

## lp__ 15.77 0.03 1.13 12.59 15.38 16.11 16.55 16.85 1146 1

##

## Samples were drawn using NUTS(diag_e) at Mon Jan 11 11:47:52 2016.

## For each parameter, n_eff is a crude measure of effective sample size,

## and Rhat is the potential scale reduction factor on split chains (at

## convergence, Rhat=1).
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B Distributions

The table below provides the details of some common distributions. In all cases, the random
variable is θ.

Distribution Density or mass function Moments
θ ∼ N(µ, σ2) 1√

2πσ2
exp

(
− 1

2σ2 (θ − µ)2
)

E[θ] = µ

V [θ] = σ2

θ ∼ Ga(α, β) βα

Γ(α)
θα−1e−βθ, θ > 0 E[θ] = α/β

V [θ] = α/β2

θ ∼ IG(α, β) βα

Γ(α)
θ−(α+1)e−β/θ, θ > 0 E[θ] = β/(α− 1), α > 1

V [θ] = β2/[(α− 1)2(α− 2)], α > 2

θ ∼ Be(α, β) Γ(α+β)
Γ(α)Γ(β)

θα−1(1− θ)β−1, 0 < θ < 1 E[θ] = α/(α + β)

V [θ] = αβ/[(α + β)2(α + β + 1)]

θ ∼ tν(µ, σ
2) Γ([ν+1]/2)

Γ(ν/2)

(
1 + 1

ν

[
θ−µ
σ

]2)−(ν+1)/2

E[θ] = µ, ν > 1

V [θ] = ν
ν−2

σ2, ν > 2

θ ∼ Geo(π) (1− π)θ−1π, θ ∈ {1, 2, 3, . . .} E[θ] = 1/π
V [θ] = (1− π)/π2
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(intentionally left blank)
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