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INTRODUCTION 

Crashes on urban interstates may cause huge economic losses and societal impacts due to the 
property damage, personal injury, travel delay and other issues. According to the estimation 
by National Highway Traffic Safety Administration [1], interstate highway crashes caused 
$28 billion in economic costs and $88 billion in comprehensive costs in 2010 in the U.S. In 
order to reduce crashes and improve traffic safety, it is necessary to identify the key factors 
that impact crash frequency on urban interstates. 

From the traditional crash frequency studies, there are several kinds of factors which have 
impacts on the crash. The road geometry, traffic condition and weather are three main study 
objects in this project. To deal with the over-dispersed crash count data, this project employed 
a hierarchical negative binomial model with full Bayesian approach. This model was applied 
on the Interstate 235 (Des Moines, IA) dataset which can properly reflect the urban interstate 
situation. The significant factors were found and explained by interpreting the model 
estimation results. According to the results, the road geometry played an important role in 
monthly crash frequency. 

DATA OVERVIEW 

There were a total of 321 crashes on I-235 through lanes in 2013. Those crashes happened on 
different segments in different months. The data for modeling the crashes consisted of roadway 
characteristics, monthly traffic speed measures and monthly weather statistics.  

The crash and roadway geometric information was obtained from Geographic Information 
Management System in Iowa Department of Transportation. In this system, every time the 
roadway geometric attributes (e.g. number of lanes) changed, the road was divided into 
segments at that point. Thus, the study road included 91 small directional segments with 1602 
feet average length (shown in Figure 1). 

The archived traffic speed data in 1-min interval were obtained from INRIX and traffic speed 
measures were computed at monthly aggregation level. Since the speed lower than 45 mph is 
generally considered as congestion on interstate, the percentage of time with average speed less 
than 45 mph in one month has been conducted to represent the congestion level.  

Historical monthly weather data were downloaded from Quality Controlled Local 
Climatological Database. This project only extracted potentially effective weather variables like 
average temperature, average precipitation, maximum snow falls, etc.  

After combining the data and removing the highly correlated variables, 6 variables could be 
used in this project. They are: segment length, number of lanes, left shoulder width, average 
speed, congestion index, maximum snow depth. The descriptive statistics of all the variables 
are shown in Table 1. 

Additionally, the segment length is usually considered as an exposure variable to the crash 
count, which means the longer the segment is, the more crashes might happen on that segment. 
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Thus, in the modeling procedure, the natural logarithm has been taken on segment length data 
in order to treat it as the offset variable. 

MODEL 
The negative binomial model is derived from the Poisson model to handle the over-dispersion 
which is often to see in crash count data. Assuming the independence among crashes, the 
negative binomial regression model is given by: 

𝑌𝑌𝑖𝑖  
𝑖𝑖𝑖𝑖𝑖𝑖∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖 ,𝜓𝜓) 

where 𝑌𝑌𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ monthly crash count; 

𝜆𝜆𝑖𝑖 is the expectation; 

𝜓𝜓 is the over-dispersion parameter; 

𝑖𝑖 = 1,2, … ,1092. (91 segments times 12 months) 

The expectation λi is modeled as: 

𝜆𝜆𝑖𝑖 = exp�𝑿𝑿𝑖𝑖𝑇𝑇 𝛽𝛽� 

where 𝑿𝑿𝑖𝑖 is the explanatory variables including ones as intercept; 

𝛽𝛽 is the parameter vector. 

To let the variables have random effect across segments, a hierarchical model is proposed: 

𝛽𝛽 𝑖𝑖𝑖𝑖𝑖𝑖∼ 𝑁𝑁�𝜇𝜇𝛽𝛽 , Σ𝛽𝛽� 

where 𝜇𝜇𝛽𝛽 and Σ𝛽𝛽 are the mean and covariance matrix for the multinomial normal distribution. 

Here I assume 𝜓𝜓𝑖𝑖, 𝜇𝜇𝛽𝛽 and Σ𝛽𝛽 are independent a priori. Thus the joint prior is: 

𝑝𝑝�𝜓𝜓, 𝜇𝜇𝛽𝛽 , Σ𝛽𝛽� = 𝑝𝑝(𝜓𝜓)𝑝𝑝�𝜇𝜇𝛽𝛽�𝑝𝑝�Σ𝛽𝛽� 

Assigning the non-informative prior on those parameters, there are: 

𝜓𝜓 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1, 1) 

𝑝𝑝�𝜇𝜇𝛽𝛽� ∝ 1 

For the covariance matrix Σ𝛽𝛽, instead of using the natural conjugate prior, the inverse-Wishart 
distribution, here I follows: 

Σ𝛽𝛽 = 𝑖𝑖𝑖𝑖𝐺𝐺𝑁𝑁�𝜎𝜎𝛽𝛽�Ω𝑖𝑖𝑖𝑖𝐺𝐺𝑁𝑁�𝜎𝜎𝛽𝛽� 

where 𝜎𝜎𝛽𝛽 is a vector of standard deviations and Ω is a correlation matrix. 

Now I have the standard deviation and correlation be independent a priori. Assigning priors on 
𝜎𝜎𝛽𝛽 and Ω: 

𝜎𝜎𝛽𝛽 ∼ 𝐶𝐶𝐺𝐺+(0, 1) 

𝑝𝑝(Ω) = |Ω|𝜂𝜂−1 

𝜂𝜂 is the sharp parameter for the LKJ distribution, here assign 𝜂𝜂 = 1. 
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RESULTS 
To get the posterior distributions of the parameters, I ran 4 Markov chains in 1000 iterations 
(first 500 iterations as burn-in) with no thinning in Stan. The initial values and Metropolis-
Hasting steps were set by Stan’s default. Table 2 summarizes the information about the Markov 
chains. There is no evidence of non-convergence since the effective sample sizes are all greater 
than 100 and the absolute values of potential scale reduction factors are all less than 1.1. The 
traceplots (shown in Figure 2) of 𝜓𝜓 and 𝛽𝛽 are displaying a good mixture of chains which also 
indicates the adequate convergence of chains. 

Table 2 also lists the mean, median and 95% credible interval for each parameter. In this project, 
𝛽𝛽1 is corresponding to the intercept and 𝛽𝛽2 to 𝛽𝛽7 are corresponding to those 6 variables. To 
better illustrate the credible interval, I put 𝜓𝜓 and 𝛽𝛽1 in one plot (Figure 3) since they have 
relatively larger scale than 𝛽𝛽2 to 𝛽𝛽7. The credible plot for 𝛽𝛽2 to 𝛽𝛽7 can be found in Figure 4, 
which has a smaller scale to accommodate the small values of those parameters.  

In Figure 3 and Figure 4, the red bar indicates the 80% credible interval while the grey bar 
indicates the 95% credible interval. Also, the vertical black line is the zero line for easily 
illustrating if the parameter is statically significant or not. The 𝛽𝛽1(intercept), 𝛽𝛽6 (average speed) 
and  𝛽𝛽7 (congestion level) is not significant at 80% credible level since the red bars involve 
zero. 𝛽𝛽5 (maximum snow depth) is significant at 80% credible level but not at 95% level. Other 
parameters are all significant at 95% credible level. Those factors are the key factors we want 
to discuss in next section. 

The posterior distribution for each parameter is shown in Figure 5. The distribution plot also 
includes the zero line to show how far or how close the majority of the distribution is toward 
the zero. 

DISCUSSION 
The over-dispersion parameter 𝜓𝜓 is greater than 0 with mean value of 1.21, which indicates the 
data is over-dispersed. This is consistent with the situation shown in Table 1, where the monthly 
crash frequency’s variance (0.652=0.4225) is greater than the mean (0.294). It validates the 
necessity of negative binomial model instead of Poisson model in this project. The discussion 
about all the critical variables are shown below. 

Segment length (𝜷𝜷𝟐𝟐): Since the crash frequency is supposed to increase on longer segment, 
segment length was treated as offset variable (a measure of exposure) and the natural logarithm 
of segment length was used in the model. The estimated mean of the parameter for log-segment 
-length is 0.69 which is a little lower than 1. That indicates the crash frequency is near linearly 
proportional to segment length, while with the increase of segment length, the increase rate in 
crash frequency is slightly lower.  

Number of lanes (𝜷𝜷𝟑𝟑 ): As number of lanes may account for more latent traffic flow 
variabilities, it may impact the crash frequency and was picked by the model. As a random 
parameter, the posterior is mainly positive, which indicates that crashes may increase as number 
of lanes increases. This result is consistent with some previous research. Milton [2] and Abdel-
Aty [3] have found that number of lanes and crash rates have positive relations in their studies.  

Left shoulder width (𝜷𝜷𝟒𝟒 ): The left shoulder width was identified to have statistical 
significance. The estimated posterior is negative, which means the segments with wider left 
shoulder may have lower crash frequency. This is consistent with the previous findings about 
left shoulder width by Fitzpatrick [4]. In addition, it is also intuitively reasonable to assume that 
better lateral clearance helps reduce crashes.  
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Others: For weather information, the maximum snow depth (𝛽𝛽5) did not show the significant 
impact on crashes. However the most part of the posterior distribution was located at the right 
side of zero. This agreed with the intuition that one might have a higher chances experiencing 
crash during the heavier snow day. Regarding the traffic-related variables (𝛽𝛽6, 𝛽𝛽7), there were 
no statistical evidence showing they had strictly positive or negative impact on crash frequency. 

This project demonstrated an application of Bayesian hierarchical negative binomial model to 
analyze the key factors impacting monthly crash frequency on urban interstate. The model could 
better manage the over-dispersed data and capture the unobserved heterogeneity by allowing 
parameters to vary across segments with Bayesian approach. This exploratory study provided 
an insight of critical factors impacting crash frequency and explored the knowledge of urban 
interstate safety. 
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TABLES AND FIGURES 

 
Figure 1 Locations of Segments in Study Area (blue pins) 

Table 1 Descriptive Statistics of Variables 
Variable Mean Std. Dev. Min. Max. 
Dependent     
Monthly crash frequency 0.294 0.650 0.000 6.000 

Independent     
Segment characteristics     
Segment length (mi) 0.303 0.225 0.008 0.980 
Number of lanes 3.692 0.794 2.000 6.000 
Left shoulder width (ft) 11.084 3.980 3.000 25.000 

Traffic related information     
Monthly average speed (mph) 63.212 4.027 41.276 74.601 
Percentage of time when speed lower than 45 mph 1.820 4.908 0.000 56.341 
(Congestion Index)     

Weather information     
Maximum snow depth (in.) 3.000 3.561 0.000 9.000 
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Table 2 Information of Markov Chains for Each Parameter 
Parameter Corresponding Variables Mean 2.5th Percentile Median 97.5th Percentile Effective Sample Size 𝑅𝑅� 

𝜓𝜓 - 1.21 0.73 1.14 2.07 928 1.01 
𝛽𝛽1 Intercept -1.57 -4.05 -1.57 0.93 719 1 
𝛽𝛽2 Length 0.69 0.52 0.69 0.87 978 1 
𝛽𝛽3 Number of Lanes 0.33 0.15 0.33 0.51 1126 1 
𝛽𝛽4 Left Shoulder Width -0.06 -0.11 -0.06 -0.01 1172 1 
𝛽𝛽5 Max. Snow Depth 0.03 -0.01 0.03 0.06 1188 1 
𝛽𝛽6 Avg. Speed 0.01 -0.03 0.01 0.05 792 1 
𝛽𝛽7 Congestion Level 0.01 -0.02 0.01 0.05 905 1 

lp_ _ - -669.05 -680.75 -668.77 -659.38 139 1.01 
 

 
Figure 2 Traceplots of Four Chains without Warm-up for Each Parameter 
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Figure 3 Credible Interval for 𝝍𝝍 (over-dispersion) and 𝜷𝜷𝟏𝟏(intercept) 

 
Figure 4 Credible Interval for 𝜷𝜷𝟐𝟐 to 𝜷𝜷𝟕𝟕 
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Figure 5 Posterior Distribution for Each Parameter 
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