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1 Introduction

The college football season is an annual gridiron of 120+ teams putting it all on the line for a chance
to be named the nation’s best team. During the year each team plays 12 games and losing a single one
can ruin your chances of winning the National Championship. While the actual season is unequivocally
exciting, the off-season for college football fans also offers its share of intrigue.

College football teams don’t have a yearly draft and can’t offer their players money, so they have to
figure out other ways to find quality players and entice them to come play for their school. This process
is called recruiting. Whether it is the playing time, a national championship, or a good draft position
in a few years, colleges and their coaches will promise almost anything to get the players they need to
win. There are college scouts that sit through hundreds of high school games and practices a year to
assign grades to players and report those grades back to their head coaches. All of this effort is put into
recruiting because coaches know that the only way to win is to have great players.

We will look at how college football teams have performed on the recruiting trail, especially focusing
on how individual past years’ classes affect a current year’s teams’ skill. Along with that, we will compare
the actual quality of a team with the expected quality based on the recruiting classes they have had.

2 Data

There are countless websites dedicated to grading recruits and rating entire classes for colleges all over
the country. One such site is Rivals.com, a Yahoo! affiliate. Rivals publishes individual rankings for
recruits on a star scale with a 1-star being a low ranked recruit and a 5-star being the best of the best.
For perspective, there are about 30 5-star recruits every year and about 250 4-star players, making up
≈ 1% and ≈ 1%, respectively. The individual player scores are then aggregated into a team score using
a formula that is basically a linear combination of the star rankings of your recruits and a couple of
special bonuses. We will use this team score as a metric for the quality of recruiting classes. Rating
of college football recruits by outside entities has only been a practice since around 2002, so we have
data from then on. In order to make the results more informative, the team class scores are normalized
within each year, so a score of 0 is average.

We are looking to use the recruiting class quality to predict the actual quality of a team, so we need
a numerical quantifier of a team’s skill. Jeff Sagarin created a ranking system that is widely known and
was even used by the NCAA to rank college football teams for a while. Sagarin’s rankings give each
team a score, usually in the range of about 50 to 95, that can be used to compare teams within a year
of play and even predict score differential if teams were to play. We will treat Sagarin’s rankings as the
truth for how good a team was at the end of the season.
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Although Sagarin has published rankings all the way back to 1998, we only use 2006 - Present because
we need the 5 previous years of recruiting data to predict each year of responses.

3 The Model

We wish to create a model for how the 5 previous years of recruiting affect a teams current skill. This
lends itself naturally to a linear regression situation where we get a coefficient for each year’s contribution
to the team’s Sagarin score. Initially, we use a model with a fixed intercept and only look at the past
class’ effects. This model will evolve into a more flexible random intercept model that will also give us
some team specific information. We will use a Normal data model, which is a justified choice based on
Figure 1.

The point of this analysis is two-fold. First we want to examine only how recruiting classes effect a
teams success. This can be viewed in its most pure form using the model with a fixed intercept. The
second fold is the team specific aspect of the model. We want to analyze how different teams have fared
relative to their expectation based on recruiting classes and which teams would be expected to perform
the best if each team had equal recruiting classes.

3.1 Fixed Intercept Model

Let i = {1, . . . , 122} represent team and j = {2006, . . . , 2014} represent the year. Then,

Yi,j
ind∼ N

(
µ+ β1xi,j + β2xi,j−1 + β3xi,j−2 + β4xi,j−3 + β5xi,j−4, σ

2
)

where Yi,j is the Sagarin score for team i in year j, xi,j−k is the recruiting score for team i, k years before
year j, β is a 5 dimensional vector.

We take µ, β and σ to be independent, so

p(µ,β, σ) ∝ p(µ)p(β)p(σ)

where p(µ) ∝ N(70, 5)

p(β) ∝ N(0, τ 2I5)

p(σ) ∝ Cauchy+(0, 3)

As a prior for the variance of the distribution of βs we will use the prior p(τ) ∝ Cauchy+(0, 1).
This model formulation results in estimation of parameters µ, β, σ, and τ . µ is the intercept, which

represents the mean overall Sagarin score. The parameters β1 to β5 are the contributions to the team’s
end of year Sagarin ranking for the first year to fifth year players on the team, respectively. σ is the
standard deviation of the differences between the actual Sagarin scores and the scores predicted by µ
and the βs.

3.2 Random Intercept Model

Like the fixed intercept model, we have a β vector that gives us slopes for each year of recruiting and a
prior on that β vector. The random intercept model, however, assigns an intercept to each team rather
than a single overall intercept. Again, we let Yi,j be the Sagarin score for team i in year j and xi,j−k be
the recruiting score for team i, k years before year j. The model is:

Yi,j
ind∼ N

(
µi + β1xi,j + β2xi,j−1 + β3xi,j−2 + β4xi,j−3 + β5xi,j−4, σ

2
)
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Now, we assign the following independent priors

p(µi,β, σ) ∝
n∏

i=1

[p(µi)] p(β)p(σ)

where p(µi) ∝ N(µ, τ 22 )

p(β) ∝ N(0, τ 21 I5)

p(σ) ∝ Cauchy+(0, 3)

In addition,

p(µ) ∝ 1

p(τ1) ∝ Cauchy+(0, 1)

p(τ2) ∝ Cauchy+(0, 1)

4 Results

4.1 Fixed Intercept Model

For the fixed intercept model I ran 10000 iterations of MCMC with 1000 iterations of burn-in. The trace
plots mixed well and all signs point to adequate convergence to the target distributions. The effective
sample sizes are all very large and the R̂ values are close to 1. We have no reason to suspect that the
chain is inadequate or didn’t converge.

The results of the chain are as follows:

2.5% 50% 97.5%
µ 70.09 70.63 71.17
β1 2.72 3.94 5.17
β2 0.66 1.87 3.09
β3 0.51 1.70 2.89
β4 -0.02 1.11 2.25
β5 -1.18 -0.05 1.04
σ 8.65 9.02 9.41
τ 1.30 2.21 4.66

Table 1: Table of 2.5th percentile, the median, and the 97.5th percentile for posterior distributions of
parameters for the fixed intercept model.

The plot of the densities for the parameters β1 . . . β5 can be found in Figure 2. The posteriors reveal
a median of 70.6316567 for the common intercept. The plot of the βs shows that β1 is significantly
higher than any of the other βs, while β2, β3, β4 are clumped as a middle group, and finally that β5 is
the lowest of the βs. The median posterior value of σ is 9.0185027.

4.2 Random Intercept Model

In order to get estimates for the random intercept model, we have to obtain posterior distribution
samples for 132 different parameters. We accomplish this, as above, via Markov Chain Monte Carlo. I
ran the model with 10000 iterations including 1000 burn-in iterations. As above, the trace plots mixed
well, the effective samples sizes are large, and the R̂ values are all very near to 1. There is no reason to
suspect that the chain doesn’t converge to the target distribution.
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2.5% 50% 97.5%
β1 1.94 2.99 4.03
β2 0.56 1.58 2.61
β3 0.71 1.69 2.74
β4 0.44 1.40 2.40
β5 -0.55 0.40 1.34
σ 7.16 7.48 7.84
τ1 1.13 1.90 3.95
τ2 4.38 5.11 6.01
µ 69.56 70.58 71.57

Table 2: Table of 2.5th percentile, the median, and the 97.5th percentile for posterior distributions of
parameters for the random intercept model.

Estimates for means of the distributions for µi can be found in Table 1 at the end of this report.
Estimates for the non-µi values are in the following table.

The predicted random quantities for this model are similar to the fixed model. The βs look like
the fixed model’s β posteriors, having at least the same general shape. µ again is a representation of
the overall mean, specifically it is the mean of the distribution of posterior means. The 122 posteriors
for different µis represent distributions for individual schools’ intercepts. The posterior median of σ is
7.4791547, which is about 1.5 points lower than the median estimate of σ for the fixed intercept model.

5 Discussion

The MCMC for both of the models behaved correctly, giving us no reason to think that our chain didn’t
converge or that there were any computational problems of any kind. Now we can start to actually use
the results that we have spent this entire time trying to obtain.

5.1 Fixed Intercept Model

In the first, fixed mean, model we were primarily concerned with looking at how previous year’s recruiting
classes effect the current team’s success. Looking at Figure 2, we see that β1 is the largest slope by a
significant margin. β1 is the slope corresponding to first year players on the team. A large slope means
that the first year players have a large impact on the quality of the team. In more detail, β1 represents
the predicted change in a teams Sagarin score for a 1 unit increase in the recruiting score for the most
recent recruiting class, when all other predictors are held constant. The other βs have similar meanings,
with the corresponding recruiting class being altered instead.

Since β1 is significantly larger than the other βs, we can conclude that a teams success is dictated
largely by its Freshman class. This makes sense from the perspective that Freshman come into a program
raw and untrained, meaning that there is a large difference between the best Freshman and the worst
Freshman. This may not be true as students get older. The practices for every team in this study
are rigorous, the weight training is top of the line, and the coaches all know what they are doing. I
believe that the skill levels of the players start to shrink together, making the effects of a class lessen
as those students grow older. Of course there are still really good players, but those really good players
don’t always correspond to the really good recruiting classes. College athletes develop in different ways
throughout their career, but Freshman are, for the most part, as advertised during recruiting, they
haven’t had a chance to change or develop yet.

The β2 and β3 distributions for slope are nearly identical with the distribution of β4 being slightly
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shifted to smaller values from β2 and β3. The slopes for all 3 of the middle βs are definitely positive,
but are not as high as the β1 value. This is good because it means that the recruiting classes for 2
years, 3 years, and 4 years prior do have a positive relationship with Sagarin rankings, and can give us
information about expected quality of a team.

Finally, β5 is the expected increase in Sagarin rankings corresponding to a 1 point increase of the
recruiting class that are now 5th year seniors, if all other covariates are held constant. The distribution
of β5 is centered around 0 and gives us no evidence that it has an effect on Sagarin rankings. I included
the 5th year coefficient in the model because a significant portion of college football players stay through
their 5th year and I wanted to be able to answer whether even after some of their class was gone, their
recruiting class was still having an effect. It doesn’t.

5.2 Random Intercept Model

Although not officially what I wanted to look at when I first started this model, I find that the interpre-
tation for the intercepts are among the most interesting information revealed by this analysis. If each
team was given an equal and average recruiting class, (each year’s covariate equal to 0) the intercepts
represent that teams expected Sagarin score. So it is basically a measure of how well a team has used
its talent. We could look at the slopes like we did for the fixed intercept model as well, but if those
quantities are of interest then we are better off just using the fixed intercept model to examine them.

It is most interesting to think of it as a ”coaching effect,” in the sense that the intercept quantifies
how good my team is thanks to only the coach, independent of the players’ skill levels. If a team has a
very low intercept, it means that they had low Sagarin scores despite decent to good recruiting. This
could reflect poor development of players or poor coaching and training during the season. If a team
has a very high intercept, it likely comes from them getting poor to mediocre recruiting classes but
performing well and getting high Sagarin rankings with those below average players. These schools get
the best out of their players. In essence, a high intercept means that you performed better than expected
based on your recruiting, and a low intercept means that you performed worse than expected based on
your team’s recruiting.

Looking at point estimates for the intercepts, a couple of interesting points arise. 5 of the top
10 schools as far as intercept are concerned (Boise State, BYU, Cincinnati, Utah, and Navy) are small
schools that play in poor conferences. This is the perfect situation for those teams because they generally
recruit at an average to below average rate because of the size of the school, but they play in bad
conferences so they still win a lot of games and earn respectable Sagarin rankings at the end of the year.
Among the 5 teams listed above, Navy is in a different situation than the others. Navy perenially ranks
in the bottom 5 in recruiting classes and then performs at a just below average rate, but they are so
bad at recruiting that even having a Sagarin ranking just below average is a feat for them. Boise State,
BYU, Cincinnati, and Utah are all decent sized school that recruit at about an average (maybe just
below) rate and perform very well, contending for well known bowl games and even being in talks for
BCS bowl games in the past.

Other interesting intercepts are Alabama with the 33rd highest. Alabama is always near the top in
recruiting and is year after year a top 10 team in Sagarin ranking, but even Alabama’s success couldn’t
get them ranked higher on the list because of how good their recruiting is. Kansas State is ranked 13th

on the list under Bill Snyder, who has baffled people for more than 20 years by turning seemingly talent
starved teams into winning juggernauts. My alma mater, Texas A&M, is ranked 52nd which is just
about average. They get just above average recruiting classes and perform at a just above average level
in general. My three favorite rankings are Texas at 97th, Michigan at 111th, and Miami (FL) at 112th.
All three are traditional powerhouses and get great recruiting classes every year, but have really been
struggling for the past 6-7 years. They perform much worse than they should with the talent that they
bring in, and it shows in their intercepts.
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Figure 1: Densities for the distribution of Sagarin’s rankings for NCAA football teams. Each curve
represents a different year. Verifies that a normal data model is appropriate for modelling Sagarin
rankings.
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Figure 2: Densities for the posterior distributions of β1 . . . β5 for the fixed intercept model. Notice the
3 sets of distributions: β1 to the far right, β2, β3, β4 in the middle set, and β5 centered around 0.
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Figure 3: Densities for the posterior distributions of β1 . . . β5 for the random intercept model. This plot
has a similar shape as the fixed intercept model.
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Figure 4: Densities for the posterior distributions of µi for {i = 1,. . . , 122}. This is not meant to be
informative about specific teams, only to give a general overview of the distribution of the µis.
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1 Boise.State 84.4411887005126
2 TCU 83.1901862250357
3 Wisconsin 80.0882734166512
4 Brigham.Young 79.8398217975428
5 Oregon 79.4859663911219
6 Cincinnati 78.7729403828867
7 Utah 78.1257998515623
8 Missouri 77.8413057943964
9 Navy 76.9861344319924
10 Stanford 76.7799010824779
11 Oklahoma.State 76.6968276023021
12 Oregon.State 76.6872837227628
13 Kansas.State 76.5616193548179
14 West.Virginia 76.0067463659355
15 Baylor 75.9403113895548
16 Georgia.Tech 75.9372616051767
17 Louisville 75.2637675275503
18 Michigan.State 74.842474893367
19 Nevada 74.6707220114264
20 Air.Force 74.6072057579171
21 Arkansas 74.3738402764138
22 Houston 74.3429465828683
23 Virginia.Tech 74.2627866117231
24 Arizona.State 74.2215815314545
25 UCF 74.0117444756685
26 Mississippi.State 73.9410746422882
27 East.Carolina 73.9301441465339
28 Northwestern 73.8731417310995
29 Iowa 73.7734957258427
30 Texas.Tech 73.7414953717759
31 Northern.Illinois 73.6190729590746
32 Arizona 73.5801136485171
33 Alabama 73.2950756638211
34 Wake.Forest 73.2098801346892
35 Boston.College 73.0062126073568
36 Ohio.State 72.91467153102
37 Tulsa 72.913091081173
38 Penn.State 72.863230841572
39 Connecticut 72.8487786355028
40 Vanderbilt 72.7727511536916
41 Rutgers 72.7719985547329
42 Oklahoma 72.4695768747156
43 South.Carolina 72.2162375299069
44 Fresno.State 72.1802945221322
45 Kentucky 71.9202572633037
46 LSU 71.8029120903811
47 Pittsburgh 71.6727826731039
48 Nebraska 71.3637992907067
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49 South.Florida 71.3061590310206
50 Hawaii 71.2754557362564
51 Clemson 71.2234196482045
52 Texas.A.M 71.217945141784
53 Utah.State 71.1835380774053
54 Western.Kentucky 71.0523616770829
55 Washington 70.9215639660561
56 Syracuse 70.620808548161
57 mu 70.5727620552528
58 Iowa.State 70.5561727429466
59 Central.Michigan 70.5051329679142
60 Louisiana.Tech 70.4654382642888
61 San.Diego.State 70.458328013632
62 Marshall 70.3494283396014
63 Washington.State 70.1951120725453
64 North.Carolina.State 70.1361071097238
65 Georgia 69.9869902281284
66 Rice 69.9654206840531
67 Appalachian.State 69.7549173792088
68 Bowling.Green 69.6658252775858
69 Ohio 69.598359459957
70 Arkansas.State 69.5934654505691
71 Minnesota 69.5746143651497
72 Auburn 69.5579620429699
73 Duke 69.5269315039926
74 Toledo 69.4312127849379
75 Troy 69.3836444567825
76 San.Jose.State 69.3737543603263
77 Ball.State 69.3724393443107
78 Wyoming 68.9037839537383
79 Temple 68.8202232738949
80 UCLA 68.7372746885252
81 Colorado.State 68.7092670553952
82 Kansas 68.6996938464319
83 Mississippi 68.6725102252684
84 Indiana 68.6610845521884
85 California 68.4851761663893
86 Louisiana.Lafayette 68.4534003435596
87 Purdue 68.4379850814014
88 Florida 68.3550278871597
89 Western.Michigan 68.1916609537872
90 Florida.State 68.1093860281612
91 Middle.Tennessee 67.7288283828917
92 North.Carolina 67.3751799222775
93 Virginia 67.2993923614573
94 Notre.Dame 67.2797059111174
95 Southern.Methodist 67.2562633791517
96 Louisiana.Monroe 67.221733585877
97 Texas 67.2166675628145
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98 Illinois 67.1886443869617
99 Maryland 67.0981881897859
100 Southern.Miss 67.0615713561811
101 UTEP 66.9984361149501
102 USC 66.8908841727585
103 Army 66.3459742477299
104 Buffalo 66.1725535984353
105 Kent.State 65.9198992662809
106 Colorado 65.5093390367157
107 Tennessee 65.3782097500374
108 New.Mexico 65.2663413973133
109 UNLV 65.219806178361
110 FIU 65.0911311755968
111 Michigan 65.0468674503411
112 Miami..FL. 64.8522872063077
113 UAB 64.6766309644693
114 Memphis 64.563963538547
115 Florida.Atlantic 64.1008802480949
116 North.Texas 63.8445191884288
117 Massachusetts 63.4871333132378
118 Miami..OH. 63.2336509238031
119 Tulane 63.0043920292004
120 Idaho 61.9089831306563
121 Akron 61.7896803480592
122 New.Mexico.State 60.2971853276509

Table 3: Table of individual team intercepts, unlabelled
and sorted in descending order. All of the distributions
are unimodal symmetric and have centers ranging from
roughly 60 to 80.
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