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1 Introduction
For the past decade, the men’s professional tennis world has been dominated
by four greatest players we have ever seen: Roger Federer, Rafael Nadal,
Novak Djokovic and Andy Murray. Media and fans often refer them as “Big
Four”. Since Australian Open 2005, almost all the ATP tour trophies have
been shared by Big Four. They have won 39 out of the last 43 men’s Grand
Slam Single titles; they have also won 10 out of previous 12 World Tour
Finals. Also,they have been consistently occupying the top four places in
ATP single’s ranking since 2008.

During their whole professional careers so far, what makes Big Four so
successful on tennis court is not just those sweeping dominating wins, but
also the tough ones when they managed to battle back after dropping one
set. In this study, I will focus on their ability to manage a victory after
dropping the first set. I gathered the data which consist of the scores of all
matches which Big Four played throughout their careers from the time they
turned pro to the end of 2014 season. An autoregressive model descirbed in
section 3 will be utilized to study the probability of comeback win for each
player over their careers. Bayesian methods will be used to fit the model.
Through the posterior samples from the MCMC sampler, we will see how
the comeback probability has been evolving over years for Big Four and how
these comeback performance patterns match with their overall career paths.
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2 Data
The original data are from the website http://tennis-data.co.uk/alldata.php.
The data files contain records of all matches played on the ATP tour each
year, including the information of tournament, surface, players, scores, result,
etc. I extract all matches involving “Big Four” from the time they turned
pro to the end of 2014. So, the data used in this project contain records of
Murray from 2005, Djokovic from 2003, Nadal from 2002 and Federer from
1998. Among these records, I picked out the matches in which they lost
the first set. After summarizing the number of comeback victories by each
player at each year, Table 1 shows the datasets which are analyzed in this
project. Figure 1 contains four plots, each of which shows a player’s number
of matches in which he fell behind after the first set and number of matches
in which he eventally won after dropping the first set.

3 Notations and Model

3.1 Notations

In this study, we have Murray’s data for 10 years (2005-2014), Djokovic’s data
for 12 years (2003-2014), Nadal’s data for 13 years (2002-2014) and Federer’s
data for 17 years (1998-2014). The key notations used in the model are listed
below:

• Use p as the index for players: p = 1 represents Murray; p = 2 repre-
sents Djokovic; p = 3 represents Nadal; p = 4 represents Federer.

• Use t as the index for year: for p = 1, t ∈ {1, ..., 10}; for p = 2,
t ∈ {1, ..., 12}; for p = 3, t ∈ {1, ..., 13}; for p = 4, t ∈ {1, ..., 17} .

• Npt: the number of matches in which player p dropped the first set in
year t.

• ypt : the number of comeback matches won by player p after dropping
the first set in year t.

• θpt : the comeback probability for player p in year t.
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3.2 Model

Here, we assume the independence among four players. Figure 2 shows the
plots of “logit(comeback rate)” against “year” for Big Four. From the patterns
of points in the plots, it is appropriate to assume an autoregressive model on
logit (θpt) for each player. Consider the following model:

• given θpt, binomial model for ypt: ypt
iid∼ Bin(Npt, θpt);

• if t = 1, logit (θp1) = µp + εp1, where εp1
iid∼ N

(
0, σ2

p

)
;

• if t > 1,logit(θpt) = µp + ρp (logit (θp,t−1)− µp) + εpt, where εpt
iid∼

N
(
0, σ2

p

)
.

We need to assign prior distirbutions on parameters µp, ρp, σp. Given limited
prior information for these parameters, noninformative priors are applied in
the bayesian analysis: the uniform priors are used for µp and ρp, and half
cauchy prior is assigned for σp. Thus, for each player,

• p (µp) ∝ 1, p (ρp) = I (−1 < ρp < 1), p (σp) ∼ Cauchy+(0, 1);

• Priors for µp, ρp and σp are mutually independent.
Thus

p (µp, ρp, σp) = p (µp) p (ρp) p (σp) ∝
1

1 + σ2
p

I (σp > 0) I (−1 < ρp < 1) .

Fit the model described above in stan, run four separate Markov Chains with
2000 iterations (first 1000 iterations as burn-in), and we obtain 4000 MCMC
samples of all parameters: θpt,µp, ρp, σp. For all parameters, the potential
scale reduction factors are less than 1.1. By checking the trace plots and
autocorrelation function plots for all parameters, there is no indication of
lack of convergence for the Markov Chains.

We assess the model fit using posterior replicates of data. To obtain a
replicate of the data, do the following:

1. obtain a set of posterior samples for θpt from Markov chain as θ(j)pt ;

2. generate a replicate of data: y(j)pt ∼ Bin(Npt, θ
(j)
pt ), for every p, t.

Figure 3 gives the histograms of 4000 posterior replicates of data. The dashed
black line represents the observed data ypt in each histograms. According to
Figures 3, except two extreme low observations, Nadal in 2004 and Federer
in 1998, there is no sign of significant lack of fit.
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4 Result
Now, let us see how each player’s comeback victory rate changes over years.
In Figure 4, the 95% credible intervals, as well as posterior median, are
presented for each parameter θpt. The pattern of how comeback rate evolves
for each player can be summarized from these plots.

Murray: Overall, Murray’s comeback ability has been gradually improv-
ing since he turned pro, except the 2010 season. The posterior median of
comeback probability increases from 0.363 in 2005 to 0.444 in 2014.

Djokovic: Unlike Murray, Djokovic’s comeback probability did not show
much increase at the early stage of his career until 2011. While, in 2011,
Djokovic’s comeback probability dramatically increased, and stayed at rela-
tively high level until 2014. This pattern is consistent with Djokovic’s career
path. He had a breakout year in 2011, winning three Grand Slams and fin-
ishing the year with a 70-6 record. Since 2011, he has been one of the most
dominant players in the tour.

Nadal: In his first year, Nadal had a very high starting point (posterior
median 0.458) of comeback probability. It fell back for the next two years.
However, his comeback ability improved significantly in 2005 season. This
is the year when he won his first grand slam and started to rise as a top
player. From 2005 to 2011, Nadal’s comeback ability seems to be relatively
consistent, except for a drop in 2009, the same year when he lost the only
French Open title in the past ten years. Since 2011, his comeback probability
has a increasing trend and the poesterior median is above 0.5 in the past two
seasons.

Federer: Despite the low starting point in his first few years, from 2000
to 2006, the posterior median of Federer’s comeback probability remarkably
increased from 0.269 to 0.619. However, in 2007, it suffered a sudden drop
to 0.462. During 2007 and 2013, the posterior median of Federer’s comeback
probability wondered between 0.4 and 0.5. In 2014, it seems to have an
impressive increase again to 0.522. Most of these shifts match well with
Federer’s career path. From 2001 to 2006, he gradually rose to be the best
player in the world. Nonetheless, since 2007, the maturity of Nadal, along
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with the emergence of Djokovic and Murray, challenged Federer’s dominance
over men’s tennis.

In Figure 5, we show the posterior means of θpt changing over years for Big
Four. This plot demonstrates how they compares with each other in come-
back ability over years. Examine the comparison starting from 2005, when
all players’ careers began to overlap. Between 2005 and 2008, it shows sthat
Federer and Nadal had better chance to achieve comeback than Djokovic and
Murray. However, starting from 2009 season, the difference diminished and
four players were almost at the same level until 2014. This also validates the
widely accepted opinion that Djokovic and Murray joined Big Four around
2009 to end the duopoly of Federer and Nadal at the summit of tennis.

5 Discussion
In the analysis above, we fit a model for the number of comeback victories for
Big Four. For the comeback probability parameters (θpt), an autoregressive
model of logit (θpt) is assigned for each player. Assuming the noninformative
priors, the posterior samples are obtained by running MCMC in stan. From
the summaries above, we can see that the patterns of posterior medians and
credible intervals for θpt over years reflect Big Four’s individual career paths
very well. And, the trend of posterior means of θpt in Figure 5 indicates the
time when Big Four emerged in the ATP tour. In this project, we use the
independent models among different players. An hierarchical model can also
be considered here by adding mixing distributions to ρp, µp and σp.

In this project, we mainly focus on how the overall comeback performance
of Big Four develops during their careers. Other interesting questions can
also be studied. For example, the surface (hard, clay, grass) information
for each match is available in original data. A Bayesian analysis can be
conducted to study their comeback rates on different surfaces as well.
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Tables and Figures:

year player Y N
2005 Andy Murray 5 20
2006 Andy Murray 7 28
2007 Andy Murray 9 20
2008 Andy Murray 11 26
2009 Andy Murray 6 13
2010 Andy Murray 5 20
2011 Andy Murray 7 18
2012 Andy Murray 11 21
2013 Andy Murray 9 15
2014 Andy Murray 13 27

(a) Murray

year player Y N
2003 Novak Djokovic 1 4
2004 Novak Djokovic 6 13
2005 Novak Djokovic 3 13
2006 Novak Djokovic 7 23
2007 Novak Djokovic 7 22
2008 Novak Djokovic 9 24
2009 Novak Djokovic 11 27
2010 Novak Djokovic 7 24
2011 Novak Djokovic 9 13
2012 Novak Djokovic 10 19
2013 Novak Djokovic 10 17
2014 Novak Djokovic 7 12

(b) Djokovic

year player Y N
2002 Rafael Nadal 5 9
2003 Rafael Nadal 5 18
2004 Rafael Nadal 2 17
2005 Rafael Nadal 9 15
2006 Rafael Nadal 13 22
2007 Rafael Nadal 9 21
2008 Rafael Nadal 9 18
2009 Rafael Nadal 7 21
2010 Rafael Nadal 7 13
2011 Rafael Nadal 5 15
2012 Rafael Nadal 3 7
2013 Rafael Nadal 10 16
2014 Rafael Nadal 13 21

(c) Nadal

year player Y N
1998 Roger Federer 0 4
1999 Roger Federer 5 22
2000 Roger Federer 5 28
2001 Roger Federer 11 29
2002 Roger Federer 5 20
2003 Roger Federer 9 22
2004 Roger Federer 7 10
2005 Roger Federer 7 8
2006 Roger Federer 8 10
2007 Roger Federer 4 11
2008 Roger Federer 8 18
2009 Roger Federer 9 16
2010 Roger Federer 6 14
2011 Roger Federer 3 11
2012 Roger Federer 11 20
2013 Roger Federer 7 20
2014 Roger Federer 9 14

(d) Federer

Table 1: Comeback records of Big Four: N represents the number of matches
in which the player dropped the first set; Y represents the number of come-
back victories after dropping the first set
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(a) Murray (b) Djokovic

(c) Nadal (d) Federer

Figure 1: Plots of each player’s comeback record over years: black points
represent the number of matches in which each player lost the first set; red
points represent the number of matches in which each player achieved a
comeback win after dropping the first set.
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Figure 2: plots of observed“logit(comeback rate)” vs. “year” for Big Four
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(a) Murray (b) Djokovic

(c) Nadal (d) Federer

Figure 3: Histograms of posterior replications ∼
ypt; the dashed black line

represents the observed data ypt
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(a) Murray (b) Djokovic

(c) Nadal (d) Federer

Figure 4: 95% credible intervals of θpt(comback probability for each player
over years): the blue segement at each year represents the 95% credible
interval; the red dot represents the median of MCMC samples
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Figure 5: posterior mean of comeback probabilityθpt changing over years for
Big Four
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Key Code in Stan:

model1=" data{
int<lower=0> M;
int<lower=1> len[4];
int<lower=0> y[M];
int<lower=0> N[M];

}
parameters{

vector<lower=0,upper=1>[M] theta;
vector[4] mu;
vector<lower=-1,upper=1>[4] rho;
vector<lower=0>[4] sigma;

}
transformed parameters{

vector[M] q;
q <- log(theta)-log(1-theta);

}
model{

int ind;
ind <- 0; ###pointer in the loop to get specific player
sigma ~ cauchy(0, 1); ###prior for sigma
rho ~ uniform(-1, 1); ####prior for rho
y ~ binomial(N, theta); ###data model
for(k in 1:4){ ###autoregressive model for logit(theta)

q[ind+1] ~ normal(mu[k], sigma[k]);
for(i in 2:len[k]){

q[ind+i] ~ normal(mu[k]+rho[k]*(q[ind+i-1]-mu[k]), sigma[k]);
}
ind <- ind + len[k];

}
}
"
m1=stan_model(model_code="model1")
d <- list(M=nrow(dat8), y=dat8$win, N=dat8$lose1, len=len)
s1 <- sampling(m1,d,c("theta","q", "sigma","mu", "rho"))
result1 <- extract(s1)
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