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Quick review of probability Set theory

Events

Definition

The set, Ω, of all possible outcomes of a particular experiment is called the sample space for
the experiment.

Definition

An event is any collection of possible outcomes of an experiment, that is, any subset of Ω
(including Ω itself).
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Quick review of probability Set theory

Craps

Craps:

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (6, 6)}
Come-out roll win: the sum of the dice is 7 or 11

Come-out roll loss: the sum of the dice is 2, 3, or 12

Come-out roll establishes a point: the sum of the dice is 4, 5, 6, 8, 9, or 10

Events:

the come-out roll wins
the come-out roll loses
the come-out roll establishes a point
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Quick review of probability Set theory

Pairwise disjoint

Definition

Two events A1 and A2 are disjoint (or mutually exclusive) if both A1 and A2 cannot occur
simultaneously, i.e. Ai ∩Aj = ∅. The events A1, A2, . . . are pairwise disjoint (or mutually
exclusive) if Ai and Aj cannot occur simultaneously for all i 6= j, i.e. A1 ∩A2 = ∅.

Craps pairwise disjoint examples:

Win (A1), Loss (A2)

Win (A1), Loss (A2), Point (A3)

A1 = (1, 1), A2 = (1, 2), . . . , A6 = (1, 6), A7 = (2, 1), . . . , A12 = (2, 6), . . . , A36 = (6, 6)
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Quick review of probability Axioms of probability

Kolmogorov’s axioms of probability

Definition

Given a sample space Ω and event space E, a probability is a function P : E → R that
satisfies

1. P (A) ≥ 0 for any A ∈ E
2. P (Ω) = 1

3. If A1, A2, . . . ∈ E are pairwise disjoint, then P (A1 or A2 or . . .) =
∑∞

i=1 P (Ai).
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Quick review of probability Axioms of probability

Craps come-out roll probabilities

The following table provides the probability mass function for the sum of the two dice if we
believe the probability of each elementary outcome is equal:

Outcome 2 3 4 5 6 7 8 9 10 11 12 Sum
Combinations 1 2 3 4 5 6 5 4 3 2 1 36
Probability 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 1

Craps probability examples:

P(Win) = P(7 or 11) = 8/36 = 2/9

P(Loss) = P(2, 3, or 12) = 4/36 = 1/9

P(Point) = P(4, 5, 6, 8, 9 or 10) = 6/9
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Quick review of probability Axioms of probability

Partition

Definition

A set of events, {A1, A2, . . .}, is a partition of the sample space Ω if and only if

the events in {A1, A2, . . .} are pairwise disjoint and

∪∞i=1Ai = Ω.

Craps partition examples:

Win (A1), Loss (A2), Point (A3)

A1 = (1, 1), A2 = (1, 2), . . . , A6 = (1, 6), A7 = (2, 1), . . . , A12 = (2, 6), . . . , A36 = (6, 6)
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Quick review of probability Conditional probability

Conditional probability

Definition

If A and B are events in E, and P (B) > 0, then the conditional probability of A given B,
written P (A|B), is

P (A|B) =
P (A and B)

P (B)

Example (Craps conditional probability)

P (7|Win) =
P (7 and Win)

P (Win)
=

P (7)

P (Win)
=

6/36

8/36
=

6

8
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Quick review of probability Conditional probability

Law of Total Probability

Corollary (Law of Total Probability)

Let A1, A2, . . . be a partition of Ω and B is another event in Ω. The Law of Total Probability
states that

P (B) =

∞∑
i=1

P (B and Ai) =

∞∑
i=1

P (B|Ai)P (Ai).

Example (Craps Win Probability)

Let Ai be the event that the sum of two die rolls is i. Then

P (Win) =

12∑
i=2

P (Win and Ai) = P (7) + P (11) =
6

36
+

2

36
=

8

36
=

2

9
.
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Quick review of probability Bayes’ Rule

Bayes’ Rule

Theorem (Bayes’ Rule)

If A and B are events in E with P (B) > 0, then Bayes’ Rule states

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Example (Craps Bayes’ Rule)

P (7|Win) =
P (Win|7)P (7)

P (Win)
=

1 · P (7)

P (Win)
=

6/36

8/36
=

6

8
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Quick review of probability Application to Down Syndrome screening

Down Syndrome screening

If a pregnant woman has a test for Down syndrome and it is positive, what is the probability
that the child will have Down syndrome? Let D indicate a child with Down syndrome and Dc

the opposite. Let ‘+’ indicate a positive test result and − a negative result.

sensitivity = P (+|D) = 0.94
specificity = P (−|Dc) = 0.77
prevalence = P (D) = 1/1000

P (D|+) = P (+|D)P (D)
P (+) = P (+|D)P (D)

P (+|D)P (D)+P (+|Dc)P (Dc) = 0.94·0.001
0.94·0.001+0.23·0.999

≈ 1/250

P (D|−) ≈ 1/10, 000
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Bayesian statistics

A Bayesian statistician

Let

y be the data we will collect from an experiment,

K be everything we know for certain about the world (aside from y), and

θ be anything we don’t know for certain.

My definition of a Bayesian statistician is an individual who makes decisions based on the
probability distribution of those things we don’t know conditional on what we know, i.e.

p(θ|y,K).
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Bayesian statistics

Bayesian statistics (with explicit conditioning)

Parameter estimation:
p(θ|y,M)

where M is a model with parameter (vector) θ and y is data assumed to come from model M
with true parameter θ0.

Hypothesis testing/model comparison:
p(Mj |y,M)

where M is a set of models with Mj ∈M for i = 1, 2, . . . and y is data assumed to come from
some model M0 ∈M.

Prediction:
p(ỹ|y,M)

where ỹ is unobserved data and y and ỹ are both assumed to come from M . Alternatively,

p(ỹ|y,M)

where y and ỹ are both assumed to come from some M0 ∈M.

Jarad Niemi (STAT544@ISU) Probability and Inference January 13, 2024 14 / 36



Bayesian statistics

Bayesian statistics (with implicit conditioning)

Parameter estimation:
p(θ|y)

where θ is the unknown parameter (vector) and y is the data.

Hypothesis testing/model comparison:
p(Mj |y)

where Mj is one of a set of models under consideration and y is data assumed to come from one
of those models.

Prediction:
p(ỹ|y)

where ỹ is unobserved data and y and ỹ are both assumed to come from the same (set of)
model(s).
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Bayesian statistics

Bayes’ Rule

Bayes’ Rule applied to a partition P = {A1, A2, . . .},

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)∑∞
i=1 P (B|Ai)P (Ai)

Bayes’ Rule also applies to probability density (or mass) functions, e.g.

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

where the integral plays the role of the sum in the previous statement.
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Bayesian statistics Parameter estimation

Parameter estimation

Let y be data from some model with unknown parameter θ. Then

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

and we use the following terminology

Terminology Notation

Posterior p(θ|y)
Prior p(θ)
Model p(y|θ)
Prior predictive distribution (marginal likelihood) p(y)

If θ is discrete (continuous),
then p(θ) and p(θ|y) are probability mass (density) functions.

If y is discrete (continuous),
then p(y|θ) and p(y) are probability mass (density) functions.
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Bayesian statistics Example: exponential model

Example: exponential model

Let Y |θ ∼ Exp(θ), then this defines the likelihood, i.e.

p(y|θ) = θe−θy.

Let’s assume a convenient prior θ ∼ Ga(a, b), then

p(θ) =
ba

Γ(a)
θa−1e−bθ.

The prior predictive distribution is

p(y) =

∫
p(y|θ)p(θ)dθ =

ba

Γ(a)

Γ(a+ 1)

(b+ y)a+1
.

The posterior is

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
(b+ y)a+1

Γ(a+ 1)
θa+1−1e−(b+y)θ,

thus θ|y ∼ Ga(a+ 1, b+ y).
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Bayesian statistics Example: exponential model

a = 1; b = 1; y = 0.5
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Bayesian statistics Example: exponential model

A shortcut

If

p(y) =

∫
p(y|θ)p(θ)dθ <∞,

then we can actually use the following to find the posterior

p(θ|y) ∝ p(y|θ)p(θ)

where the ∝ signifies that terms not involving θ (or anything on the left of the conditioning
bar) are irrelevant and can be dropped.

In the exponential example

p(θ|y) ∝ p(y|θ)p(θ) ∝ θe−θyθa−1e−bθ = θa+1−1e−(b+y)θ

where we can recognize p(θ|y) as the kernel of a Ga(a+ 1, b+ y) distribution and thus
θ|y ∼ Ga(a+ 1, b+ y) and p(y) <∞.
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Bayesian statistics Example: exponential model

Independent data

Suppose Yi|θ
ind∼ Exp(θ) for i = 1, . . . , n and y = (y1, . . . , yn), then

p(y|θ) =

n∏
i=1

p(yi|θ) = θne−θny

Then
p(θ|y) ∝ p(y|θ)p(θ) ∝ θa+n−1e−(b+ny)θ

where ny =
∑n

i=1 yi. We recognize this as the kernel of a gamma, i.e.

θ|y ∼ Ga(a+ n, b+ ny).
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Bayesian statistics Example: exponential model

a = 1; b = 1; set.seed(20141121); y = rexp(10, 2)
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Bayesian statistics Example: exponential model

Bayesian learning (in parameter estimation)

So, Bayes’ Rule provides a formula for updating from prior beliefs to our posterior beliefs based
on the data we observe, i.e.

p(θ|y) =
p(y|θ)
p(y)

p(θ) ∝ p(y|θ)p(θ)

Suppose we gather y1, . . . , yn sequentially (and we assume yi independent conditional on θ),
then we have

p(θ|y1) ∝ p(y1|θ)p(θ)
p(θ|y1, y2) ∝ p(y2|θ)p(θ|y1)

and
p(θ|y1, . . . , yi) ∝ p(yi|θ)p(θ|y1, . . . , yi−1)

So Bayesian learning is

p(θ)→ p(θ|y1)→ p(θ|y1, y2)→ · · · → p(θ|y1, . . . , yn).
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Bayesian statistics Model comparison

Model comparison

Formally, to compare models (or average over models), we use

p(Mj |y) ∝ p(y|Mj)p(Mj)

where

p(y|Mj) is the likelihood of the data when model Mj is true

p(Mj) is the prior probabability for model Mj

p(Mj |y) is the posterior probability for model Mj

Thus, a Bayesian approach provides a natural way to learn about models, i.e.
p(Mj)→ p(Mj |y).
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Bayesian statistics Prediction

Prediction

Let y be observed data and ỹ be unobserved data from a model with parameter θ where ỹ is
conditionally independent of y given θ (true for many of the models we will discuss this
semester) , then

p(ỹ|y) =
∫
p(ỹ, θ|y)dθ

=
∫
p(ỹ|θ, y)p(θ|y)dθ

=
∫
p(ỹ|θ)p(θ|y)dθ

where p(θ|y) is the posterior we obtained using Bayesian parameter estimation techniques.
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Bayesian statistics Prediction

Example: exponential distribution

From previous, let yi
ind∼ Exp(θ) and θ ∼ Ga(a, b), then θ|y ∼ Ga(a+ n, b+ ny). Suppose we

are interested in predicting a new value ỹ ∼ Exp(θ) (conditionally independent of
y = (y1, . . . , yn) given θ). Then we have

p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ

=
∫
θe−θỹ (b+ny)a+n

Γ(a+1) θa+n−1e−θ(b+ny)dθ

= (b+ny)a+n

Γ(a+n)

∫
θa+n+1−1e−θ(b+ny+ỹ)dθ

= (b+ny)a+n

Γ(a+n)
Γ(a+n+1)

(b+ny+ỹ)a+n+1

= (a+n)(b+ny)a+n

(ỹ+b+ny)a+n+1

This is the Lomax distribution for ỹ with parameters a+ n and b+ ny.
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Bayesian statistics Prediction
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What is probability?

What is probability?

Consider the following three typical uses of the word “probability”:

What is the probability I will win on the come-out roll in craps?

What is the probability my unborn child has Down’s syndrome given that they tested
positive in an initial screening?

What is the probability the Green Bay Packers will win this year’s superbowl?
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What is probability? Frequency interpretation

Win on the come-out roll in craps

To win on the come-out roll in craps requires that the sum of two fair six-sided die is either a
7 or an 11. We calculated this probability earlier (based on equal probabilities of all simple
outcomes) to be 2/9. We likely meant that if we were to repeatedly roll the die, the long term
proportion of wins (7s and 11s) would be 2/9, i.e.

if Xi =

{
1 if win on roll i
0 otherwise

then lim
n→∞

∑n
i=1Xi

n
→ 2

9
.

Definition

The frequency interpretation of probability is based on the relative frequency of an event
(assumed to be performed in an identical manner).
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What is probability? Frequency interpretation

Win on the come-out roll in craps

Definition

The frequency interpretation of probability is based on the relative frequency of an event
(assumed to be performed in an identical manner).

Two problems with this frequency interpretation:

You cannot possibly throw the dice in an identical manner.

If I knew enough physics, I could model each throw and tell you exactly what the result
would be, i.e. the only randomness is because the throws are not identical.
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What is probability? Frequency interpretation

Down’s syndrome

What is the probability my unborn child has Down’s syndrome given that they tested positive
in an initial screening?

Here the frequency interpretation makes no sense for two reasons:

There is only one child and thus no repeat of the experiment.

There is no randomness: either the child has Down’s syndrome or does not.

Instead, we only have our own uncertainty about whether the child has Down’s syndrome.
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What is probability? Frequency interpretation

Down’s syndrome

Also, why are we only conditioning on the positive test result, shouldn’t we condition on
everything else that is important, e.g. age. Then the probability we care about is

P (D|+,mother is 33) =
P (+|D,mother is 33)P (D|mother is 33)

P (+|mother is 33)

Now the specificity, sensitivity, and prevalence are all the relative frequency of the event for
this subpopulation.

But what about other measured variables, e.g. Caucasian, lives in MN, of Scandanavian
descent, etc. Taken to its logical extreme, each probability becomes a statement about one
single event, e.g. for this individual.
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What is probability? Frequency interpretation

Superbowl Champions

What is the probability the Green Bay Packers win the Superbowl?

By similar arguments:

There is only one Superbowl this year and only one Green Bay Packers.

Is the world random? i.e. do we have free will? If not, then (with enough time,
computing power, money, etc) we could model the world and know what the result will
be. If yes, is there an objective probability that we could be estimating?
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What is probability? Personal belief

Personal belief

Definition

A subjective probability describes an individual’s personal judgement about how likely a
particular event is to occur.

http://www.stats.gla.ac.uk/glossary/?q=node/488

Remark Coherence of bets. The probability p you assign to an event E is the fraction at
which you would exchange p for a return of 1 if E occurs.

Rational individuals can differ about the probability of an event by having different knowledge,
i.e. P (E|K1) 6= P (E|K2). But given enough data, we might have P (E|K1, y) ≈ P (E|K2, y).
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What is probability? Personal belief

Personal belief

Using a personal belief definition of probability, it is easy to reconcile the use of probability in
common language:

What is the probability I will win on the come-out roll in craps?

What is the probability my unborn child has Down’s syndrome given that they tested positive in an initial screening?

What is the probability the Green Bay Packers will win this year’s superbowl?

What is the probability that global climate change is primarily driven by human activity?

What is the probability the Higgs Boson exists?

and in the mathematical notation:

p(θ)→ p(θ|y)

p(H1)→ p(H1|y)

p(ỹ|y)

Jarad Niemi (STAT544@ISU) Probability and Inference January 13, 2024 35 / 36



Why or why not Bayesian?

Why or why not Bayesian?

Why do a Bayesian analysis?

Incorporate prior knowledge via p(θ)

Coherent, i.e. everything follows from specifying p(θ|y)

Interpretability of results, e.g. the probability the parameter is in (L,U) is 95%

Why not do a Bayesian analysis?

Need to specify p(θ)

Computational cost

Does not guarantee coverage, i.e. how well do the procedures work over all their uses
(although frequentist matching priors are specifically designed to ensure frequentist
properties, e.g. coverage)
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