Parameter estimation

Dr. Jarad Niemi

STAT 544 - Iowa State University

January 24, 2024

Outline

- Parameter estimation
 - Beta-binomial example
 - Point estimation
 - Interval estimation
 - Simulation from the posterior
- Priors
 - Subjective
 - Conjugate
 - Default
 - Improper

Parameter estimation

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(heta|y) = rac{p(y| heta)p(heta)}{p(y)} = rac{p(y| heta)p(heta)}{\int p(y| heta)p(heta)d heta} \propto p(y| heta)p(heta)$$

where

- $p(\boldsymbol{\theta})$ is the prior distribution for the parameter,
- $p(\boldsymbol{\theta}|\boldsymbol{y})$ is the posterior distribution for the parameter,
- $p(y|\theta)$ is the statistical model (or likelihood), and
- p(y) is the prior predictive distribution (or marginal likelihood).

Obtaining the posterior

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

- 1. Derive $f(\theta) = p(y|\theta)p(\theta)$.
- 2. Recognize $f(\theta)$ as the kernel of some distribution.

Definition

The kernel of a probability density (mass) function is the form of the pdf (pmf) with any terms not involving the random variable omitted.

For example, $\theta^{a-1}(1-\theta)^{b-1}$ is the kernel of a beta distribution.

Derive the posterior - the hard way

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)\text{, then}$

$$\begin{split} p(y) &= \int p(y|\theta) p(\theta) d\theta \\ &= \int {n \choose y} \theta^y (1-\theta)^{n-y} \frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} d\theta \\ &= {n \choose y} \frac{1}{\mathsf{Beta}(a,b)} \int \theta^{a+y-1} (1-\theta)^{b+n-y-1} d\theta \\ &= {n \choose y} \frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

which is known as the Beta-binomial distribution.

$$\begin{aligned} p(\theta|y) &= p(y|\theta)p(\theta)/p(y) \\ &= \binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \left/ \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \right. \\ &= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}}{\mathsf{Beta}(a+y,b+n-y)} \end{aligned}$$

Thus $\theta | y \sim Be(a+y, b+n-y).$

Derive the posterior - the easy way

Suppose $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then

$$p(\theta|y) \propto p(y|\theta)p(\theta) \\ \propto \theta^y (1-\theta)^{n-y} \theta^{a-1} (1-\theta)^{b-1} \\ = \theta^{a+y-1} (1-\theta)^{b+n-y-1}$$

Thus $\theta | y \sim Be(a+y, b+n-y)$.

Interpretation of prior parameters

When constructing the Be(a, b) prior with the binomial likelihood which results in the posterior

$$\theta | y \sim Be(a+y, b+n-y),$$

we can interpret the prior parameters in the following way:

- *a*: prior successes
- b: prior failures
- a + b: prior sample size
- a/(a+b): prior mean

These interpretations may aid in construction of this prior for a given application.

Beta-binomial example

Posterior mean is a weighted average of prior mean and the MLE

The posterior is $\theta | y \sim Be(a + y, b + n - y)$. The posterior mean is

$$E[\theta|y] = \frac{a+y}{a+b+n} \\ = \frac{a}{a+b+n} + \frac{y}{a+b+n} \\ = \frac{a+b}{a+b+n} \left(\frac{a}{a+b}\right) + \frac{n}{a+b+n} \left(\frac{y}{n}\right)$$

Thus, the posterior mean is a weighted average of the prior mean a/(a+b) and the MLE y/nwith weights equal to the prior sample size (a + b) and the data sample size (n).

Example data

Assume $Y \sim Bin(n, \theta)$ and $\theta \sim Be(1, 1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y = 3) out of ten attempts (n = 10). Then our posterior is $\theta|y \sim Be(1+3, 1+10-3) \stackrel{d}{=} Be(4, 8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Remark Note that a Be(1,1) is equivalent to $p(\theta) = I(0 < \theta < 1)$, i.e.

 $p(\theta|y) \propto p(y|\theta)p(\theta) = p(y|\theta)I(0 < \theta < 1)$

so it may seem that a reasonable approach to a default prior is to replace $p(\theta)$ by a 1 (times the parameter constraint). We will see later that this depends on the parameterization.

Posterior distribution

Distribution — normalized likelihood ---- prior

Try it yourself at https://jaradniemi.shinyapps.io/one_parameter_conjugate/.

Point and interval estimation

Nothing inherently Bayesian about obtaining point and interval estimates.

Point estimation requires specifying a loss (or utility) function.

A 100(1-a)% credible interval is any interval in the posterior that contains the parameter with probability (1-a).

Point estimation

Define a loss (or utility) function $L(\theta, \hat{\theta}) = -U(\theta, \hat{\theta})$ where

- θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left. L\left(\theta, \hat{\theta}
ight) \right| y
ight]$$

or maximizes expected utility.

Common estimators:

- Mean: $\hat{\theta}_{Bayes} = E[\theta|y]$ minimizes $L(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
- Median: $\int_{\hat{\theta}_{Bayes}}^{\infty} p(\theta|y) d\theta = \frac{1}{2}$ minimizes $L(\theta, \hat{\theta}) = \left| \theta \hat{\theta} \right|$
- Mode: $\hat{\theta}_{Bayes} = \operatorname{argmax}_{\theta} p(\theta|y)$ is obtained by minimizing $L(\theta, \hat{\theta}) = -I(|\theta \hat{\theta}| < \epsilon)$ as $\epsilon \to 0$, also called maximum a posterior (MAP) estimator.

Parameter estimation

Mean minimizes squared-error loss

Theorem

The mean minimizes expected squared-error loss.

Proof.
Suppose
$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
 $E\left[L(\theta, \hat{\theta}) \middle| y\right] = E\left[\theta^2 | y\right] - 2\hat{\theta}E[\theta | y] + \hat{\theta}^2$
 $\frac{d}{d\hat{\theta}}E\left[L(\theta, \hat{\theta}) \middle| y\right] = -2E[\theta | y] + 2\hat{\theta} \stackrel{set}{=} 0 \implies \hat{\theta} = E[\theta | y]$
 $\frac{d^2}{d\hat{\theta}^2}E\left[L(\theta, \hat{\theta}) \middle| y\right] = 2$

So $\hat{\theta} = E[\theta|y]$ minimizes expected squared-error loss.

Jarad Niemi (STAT544@ISU)

Parameter estimation

13/40

Point estimation

Point estimation

Interval estimation

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals are

- Equal-tailed: $a/2 = \int_{-\infty}^L p(\theta|y) d\theta = \int_U^\infty p(\theta|y) d\theta$
- One-sided: either $L = -\infty$ or $U = \infty$
- Highest posterior density (HPD): p(L|y) = p(U|y) for a uni-modal posterior which is also the shortest interval

Interval estimation

Simulation from the posterior

An estimate of the full posterior can be obtained via simulation, i.e.

sim = data.frame(x = rbeta(10000, shape1 = a + y, shape2 = b + n - y))

Estimates via simulation

We can also obtain point and interval estimates using these simulations

```
round(c(mean = mean(sim$x), median = median(sim$x)),2)
  mean median
  0.34 0.33
round(guantile(sim$x, c(.025,.975)),2) # Equal-tail
 2.5% 97.5%
 0.11 0.61
round(c(quantile(sim$x, .05),1),2) # Upper
 5%
0 13 1 00
round(c(0,quantile(sim$x, .95)),2) # Lower
      95%
0.00 0.57
```

Guess the probability

What do you think the probability is?

- A 6-sided die lands on 1.
- The first base pair in my chromosome 1 is A.
- Kansas City Chiefs win 2023 Super Bowl.

Priors

What are priors?

Definition

A prior probability distribution, often called simply the prior, of an uncertain quantity θ is the probability distribution that would express one's uncertainty about θ before the "data" is taken into account.

http://en.wikipedia.org/wiki/Prior_distribution

Priors

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

For example, the beta distribution (\mathcal{P}) is conjugate to the binomial distribution with unknown probability of success (\mathcal{F}) since

$$\theta \sim \mathsf{Be}(a, b)$$
 and $\theta | y \sim \mathsf{Be}(a + y, b + n - y).$

Definition

A natural conjugate prior is a conjugate prior that has the same functional form as the likelihood.

For example, the beta distribution is a natural conjugate prior since

$$p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$
 and $L(\theta) \propto \theta^y (1-\theta)^{n-y}$.

Jarad Niemi (STAT544@ISU)

Discrete priors are conjugate

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i$$
 $\sum_{i=1}^{I} p_i = 1$

and $p(y|\theta)$ is the model. Then, $P(\theta=\theta_i|y)=p_i'$ is the posterior with

$$p'_{i} = \frac{p_{i}p(y|\theta_{i})}{\sum_{j=1}^{\mathrm{I}} p_{j}p(y|\theta_{j})} \propto p_{i}p(y|\theta_{i}).$$

Conjugate Priors

Discrete prior

Discrete mixtures of conjugate priors are conjugate

Theorem

Discrete mixtures of conjugate priors are conjugate.

Proof.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{\mathbf{I}} p_i p_i(\theta) \qquad \sum_{i=1}^{\mathbf{I}} p_i = 1,$$

and $p_i(y) = \int p(y|\theta) p_i(\theta) d\theta$, then

$$\begin{aligned} p(\theta|y) &= \frac{1}{p(y)} p(y|\theta) p(\theta) = \frac{1}{p(y)} p(y|\theta) \sum_{i=1}^{\mathrm{I}} p_i p_i(\theta) = \frac{1}{p(y)} \sum_{i=1}^{\mathrm{I}} p_i p(y|\theta) p_i(\theta) \\ &= \frac{1}{p(y)} \sum_{i=1}^{\mathrm{I}} p_i p_i(y) p_i(\theta|y) = \sum_{i=1}^{\mathrm{I}} \frac{p_i p_i(y)}{p(y)} p_i(\theta|y) = \sum_{i=1}^{\mathrm{I}} \frac{p_i p_i(y)}{\sum_{j=1}^{\mathrm{I}} p_j p_j(y)} p_i(\theta|y) \end{aligned}$$

Mixtures of conjugate priors are conjugate

1

Bottom line: if

$$\theta \sim \sum_{i=1}^{\mathrm{I}} p_i p_i(\theta) \qquad \sum_{i=1}^{\mathrm{I}} p_i = 1$$

and $p_i(y) = \int p(y|\theta) p_i(\theta) d\theta$, then

$$heta|y \sim \sum_{i=1}^{I} p'_i p_i(\theta|y) \qquad p'_i \propto p_i p_i(y)$$

where $p_i(\theta|y) = p(y|\theta)p_i(\theta)/p_i(y)$.

Priors Conjugate

Mixture of beta distributions

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$\begin{split} p(y) &= \int p(y|\theta) p(\theta) d\theta = \int \binom{n}{y} \theta^y (1-\theta)^{n-y} \frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \\ &= \binom{n}{y} \frac{1}{\mathsf{Beta}(a,b)} \int \theta^{a+y-1} (1-\theta)^{b+n-y-1} d\theta \\ &= \binom{n}{y} \frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0, \dots, n \end{split}$$

which is called the beta-binomial distribution with parameters a+y and b+n-y. If $Y\sim Bin(n,\theta)$ and

$$\theta \sim p \operatorname{\mathsf{Be}}(a_1, b_1) + (1-p) \operatorname{\mathsf{Be}}(a_2, b_2),$$

then

$$\theta|y \sim p'\operatorname{\mathsf{Be}}(a_1+y,b_1+n-y) + (1-p')\operatorname{\mathsf{Be}}(a_2+y,b_2+n-y)$$

with

$$p' = \frac{p \, p_1(y)}{p \, p_1(y) + (1-p) p_2(y)} \qquad p_i(y) = \binom{n}{y} \frac{\mathsf{Beta}(a_i + y, b_i + n - y)}{\mathsf{Beta}(a_i, b_i)}$$

Conjugate

Mixture priors

Binomial, mixture of betas

Default priors

Definition

A default prior is used when a data analyst is unable or unwilling to specify an informative prior distribution.

Default priors

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta / [1 - \theta]) \right|$$

= $\frac{1 - \theta}{\theta} \left[\frac{1}{1 - \theta} + \frac{\theta}{[1 - \theta]^2} \right]$
= $\frac{1 - \theta}{\theta} \left[\frac{[1 - \theta] + \theta}{[1 - \theta]^2} \right]$
= $\theta^{-1} [1 - \theta]^{-1}$

a Be(0,0), if that were a proper distribution, and is different from setting $p(\theta) \propto 1$ which results in the Be(1,1) prior. Thus, the constant prior is not invariant to the parameterization used.

Fisher information background

Definition

Fisher information, $\mathcal{I}(\theta)$, for a scalar parameter θ is the expectation of the second derivative of the log-likelihood, i.e.

$$\mathcal{I}(\theta) = E\left[\left.\frac{\partial^2}{\partial \theta^2}\log p(y|\theta)\right|\theta
ight].$$

Theorem (Casella & Berger (2nd ed) Lemma 7.3.11)

For exponential families,

$$\mathcal{I}(\theta) = -E\left[\left.\left(\frac{\partial}{\partial\theta}\log p(y|\theta)\right)^2\right|\theta\right].$$

If $\theta = (\theta_1, \dots, \theta_n)$, then the Fisher information is the expectation of the Hessian matrix, which has the *i*th row and *j*th column that is the partial derivative with respect to θ_i followed by the partial derivative with respect to θ_j , of the log-likelihood.

Jeffreys prior

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

 $p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$

where $\mathcal{I}(\theta)$ is the Fisher information.

For example, for a binomial distribution $\mathcal{I}(\theta) = \frac{n}{\theta | 1 - \theta |}$, so

$$p(\theta) \propto \theta^{-1/2} (1-\theta)^{-1/2} = \theta^{1/2-1} (1-\theta)^{1/2-1}$$

a Be(1/2,1/2) distribution.

Jeffreys prior

Fisher information

Theorem

The Fisher information for $Y \sim Bin(n, \theta)$ is $\mathcal{I}(\theta) = \frac{n}{\theta(1-\theta)}$.

Proof.

Since the binomial is an exponential family,

$$\begin{aligned} \mathcal{I}(\theta) &= -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(y|\theta) \right] = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log \binom{n}{y} + y \log \theta + (n-y) \log(1-\theta) \right] \\ &= -E_{y|\theta} \left[\frac{\partial}{\partial \theta} \frac{y}{\theta} - \frac{n-y}{1-\theta} \right] = -E_{y|\theta} \left[-\frac{y}{\theta^2} - \frac{n-y}{(1-\theta)^2} \right] = -\left[-\frac{n\theta}{\theta^2} - \frac{n-n\theta}{(1-\theta)^2} \right] = \frac{n}{\theta} + \frac{n}{(1-\theta)} \\ &= \frac{n}{\theta(1-\theta)} \end{aligned}$$

Priors

Distribution — normalized likelihood ---- prior

Non-conjugate priors

If
$$Y \sim Bin(n, heta)$$
 and $p(heta) = e^{ heta}/(e-1)$, then

$$p(\theta|y) \propto f(\theta) = \theta^y (1-\theta)^{n-y} e^{\theta}$$

Priors

which is not a known distribution.

Options

- Plot $f(\theta)$ (possibly multiplying by a constant).
- Find $i = \int f(\theta) d\theta$, so that $p(\theta|y) = f(\theta)/i$.
- Evaluate $f(\theta)$ on a grid and normalize by the grid spacing.

Plot of $f(\theta)$

Binomial, nonconjugate prior

θ

Priors Non-conjugate priors

Numerical integration

Find
$$i = \int f(\theta) d\theta$$
, so that $p(\theta|y) = f(\theta)/i$.

(i = integrate(f, 0, 1))

0.001066499 with absolute error < 1.2e-17

Nonconjugate prior, numerical integration

Binomial, nonconjugate prior

Nonconjugate prior, evaluated on a grid

Binomial, nonconjugate prior

theta[c(which(cumsum(d)*w>0.025)[1]-1, which(cumsum(d)*w>0.975)[1])] # 95\% CI

[1] 0.105 0.625

Improper priors

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

to see that $p(\theta|y)$ is a proper normalized density note that $c = \int f(\theta) d\theta$ is not a function of θ , then

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta = \int \frac{f(\theta)}{c}d\theta = \frac{1}{c}\int f(\theta)d\theta = \frac{c}{c} = 1$$

Be(0,0) prior

Recall that Be(a, b) is a proper probability distribution if a > 0, b > 0.

Suppose $Y \sim Bin(n,\theta)$ and $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$, i.e. the kernel of a Be(0,0) distribution. This is an improper distribution.

The posterior, $\theta | y \sim Be(y, n - y)$, is proper if 0 < y < n.