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o Scaled Inv-x?2 distribution
o t-distribution
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@ Normal model with unknown mean and variance

o Jeffreys prior
o Natural conjugate prior
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(IS T NI ITIEIEEN  3-point success in basketball

Motivating example

Is Andre Dawkins 3-point percentage higher in 2013-2014 than each of the past years?

Season Year Made Attempts
1 2009-2010 36 95
2 2010-2011 64 150
3 2011-2012 67 171
4 2013-2014 64 152
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Independent binomials Binomial model

Binomial model

Assume an independent binomial model,

s s
Y, ® Bin(ns,05), ie. , p(yl0) = ] p(ysl6:) H< )9% (1 — @)=
s=1 s=1
where
@ y, is the number of 3-pointers made in season s
@ ng is the number of 3-pointers attempted in season s
@ 0, is the unknown 3-pointer success probability in season s
@ S is the number of seasons
0 0= (01,02,03,04)" and y = (y1, Y2, Y3, Y4)
and assume independent beta priors distribution:

gag—l(l -0 )bs—l
I s < 1).
Hp Beta(as, bs) (0< 85 <1)
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Independent binomials Binomial model

Joint posterior

Derive the posterior according to Bayes rule:

p(Oly) o< p(y|0)p(0)
=TI, p(ys10s) TIE, p(65)
= T1._1 p(ys|0s)p(9s)
o [T5_, Beta(fs|as + ys, bs + s — ys)

So the posterior for each 6, is exactly the same as if we treated each season independently.
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Monte Carlo estimates - code

Estimating means, medians, and quantiles (credible intervals).

sim = d [|>
expand_grid(rep = 1:1e3) |>
mutate(theta = rbeta(n(), a, b))

hpd = function(theta, a, b, p=.95) {
h dbeta((a-1)/(a+b-2),2,b)
ftheta = dbeta(theta,a,b)
T = uniroot (function(x) mean(ftheta>x)-p,c(0,h))
range (theta[which(ftheta>r$root)])

sim |>
group_by (year) %>%
summarize (
mean = mean(theta),
median = median(theta),

cil. = quantile(theta, c(.025,.975))[1],
ciU = quantile(theta, c(.025,.975))[2],
hpdL = hpd(theta,al1],b[1]) [1],
hpdU = hpd(theta,a[1],b[1]) [2])
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Monte Carlo estimates

Monte Carlo estimates

Estimated means, medians, and quantiles (credible intervals).

# A tibble:

year
<int>
1

N
s w N

4x7

mean median
<dbl>
0.383
0.428
0.395
0.423

<dbl>
0.382
0.430
0.396
0.424

cil cil
<dbl> <dbl>
0.289 0.482
0.350 0.505
0.324 0.469
0.346 0.498

hpdL
<dbl>
0.285
0.351
0.321
0.347

hpdU
<dbl>
0.480
0.505
0.466
0.498
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Monte Carlo estimates

Comparing probabilities across years

The scientific question of interest here is whether Dawkins's 3-point percentage is higher in
2013-2014 than in each of the previous years. Using probability notation, this is

P(6y > 05ly) for s =1,2,3.

which can be approximated via Monte Carlo as

M
1 m m
P01 > Ouly) = Epp, 105 > 0,)] ~ — > 1 (9< > 0! >)
m:l
where
o egm) zzzd Be(as + Ys, bs +ns — ys)

@ I(A) is in indicator function that is 1 if A is true and zero otherwise
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Estimated probabilities

s <= sim |>
select(rep, year, theta) |>
mutate(year = pasteO("theta_",year)) [>
pivot_wider(
id_cols = rep,
names_from = year,
values_from = theta

)

mean(s$theta_4 > s$theta_1)
[1] 0.758
mean(s$theta_4 > s$theta_2)
[1] 0.454
mean(s$theta_4 > s$theta_3)

[1] 0.697
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s
Using JAGS

library("rjags")
independent_binomials = "
model {
for (i in 1:N) {
y[il ~ dbin(thetalil,n[i])
theta[i] ~ dbeta(l,1)

d = list(y=c(36,64,67,64), n=c(95,150,171,152), N=4)
m = jags.model(textConnection(independent_binomials), d)

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 4
Unobserved stochastic nodes: 4
Total graph size: 14

Initializing model

res = coda.samples(m, "theta", 1000)

d Niemi (ST 40l
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summary (res)

Iterations = 1001:2000
Thinning interval = 1
Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
theta[1] 0.3827 0.04845 0.001532 0.001947
theta[2] 0.4269 0.03819 0.001208 0.001574
theta[3] 0.3952 0.03605 0.001140 0.001302
theta[4] 0.4221 0.03993 0.001263 0.001630

2. Quantiles for each variable:

2.5% 25% 507 75% 97.5/
theta[1] 0.2925 0.3488 0.3818 0.4168 0.4801
theta[2] 0.3523 0.4028 0.4261 0.4528 0.5008
theta[3] 0.3263 0.3706 0.3943 0.4188 0.4667
theta[4] 0.3454 0.3967 0.4208 0.4474 0.5013
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s
JAGS Analysis

theta = as.matrix(res[[1]])

mean(thetal,4] > thetal,1])
[1] 0.724
mean(thetal[,4] > thetal,2])
[1] 0.447

mean(thetal[,4] > thetal,3])

[1] 0.698
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Background probability theory

@ Scaled Inv-x? distribution
@ Location-scale t-distribution

o Normal-Inv-y? distribution
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Probability theory Scaled-inverse x-square

Scaled-inverse y2-distribution

If 02 ~ IG(a,b) with shape a and scale b, then o2 ~ Inv-x?(v, 2?) with degrees of freedom v
and scale 22 have the following

e a=wv/2and b= vz2/2, or, equivalently,

e v=2aand 22 =b/a.

Deriving from the inverse gamma, the scaled-inverse y? has
e Mean: vz2/(v — 2) for v > 2
e Mode: vz?/(v +2)
e Variance: 2v%(22)?/[(v — 2)?(v — 4)] for v > 4

So 22 is a point estimate and v — oo means the variance decreases, since, for large v,
202(22)2 N 21)2(22)2 B 2(22)2
(v—22wv—4) " v v
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ILEWAG AN Scaled-inverse x-square

Scaled-inverse y?-distribution

dinvgamma = function(x, shape, scale, ...) dgamma(l/x, shape = shape, rate = scale, 000) [ B
dsichisq = function(x, dof, scale, ...) dinvgamma( x, shape = dof/2, scale = dof*scale/2, ...)
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Probability theory t-distribution

Location-scale ¢-distribution

The t-distribution is a location-scale family (Casella & Berger Thm 3.5.6), i.e. if T, has a
standard ¢-distribution with v degrees of freedom and pdf

10 = Fayig () T

then X = m + 2T, has pdf

o\ — (o 1)/2
fX(@th([iU—m]/Z)/Z:W <1+3) [x_zm} ) '

This is referred to as a t distribution with v degrees of freedom, location m, and scale z; it is
written as t,(m, 22). Also,

ty(m, z%) =3’ N(m, 2%).
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Probability theory t-distribution

t distribution as v changes
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Probability theory t-distribution

Normal-Inv-x? distribution

Let p|o? ~ N(m,o?/k) and 0% ~ Inv-x?(v, %), then the kernel of this joint density is

p(p, %) = p(ulo?)p(a?) 2
x (2) Ve T (g2 e
= (02)~(wt3)/2¢™ L5 [k(u—m)?+v2?]

In addition, the marginal distribution for w is

p(p) = fp(u|02)p(02)d02 = ...

—(v+1)/2
_ _ D(p+1)/2) 141 [H,mr (v+1)/
['(v/2)vorz/VE v | z/Vk )

with g € R. Thus p ~ t,(m, 22/k).
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Univariate normal

Univariate normal model

Suppose Y; % N (y, 02).

Normal model
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Univariate normal Confidence interval

Confidence interval for

Let

12_: and SQZnilz(YQ—?)2~

3

Then, o
Y —pu .
S/\/ﬁ n—1

and an equal-tail 100(1 — )% confidence interval can be constructed via

Tn—l =

l-a =P (7tn—1,1—a/2 < Tn—l < tn_l,l—a/2)
:P(?—%gug?-kw)

n

where t,,_1 1_o/2 is the t-critical value, i.e. P(T,_1 > t,,_11-a/2) = /2.
Thus
Jttn_1,1-a/25/Vn
is an equal-tail 100(1 — o)% confidence interval with 7 and s the observed values of Y and S.
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Univariate normal Priors

Default priors

Jeffreys prior can be shown to be p(u, 02) o (1/52)%/2. But alternative methods, e.g.
reference prior, find that p(u,02) o< 1/02 is a more appropriate prior.

The posterior under the reference prior is

P, 0%ly) o< (02) "2 exp (—ﬁ i (v — 1)) X %
= (02" exp (=552 iy (i Y+ T — 1)?) X 3

= (0%) 1 2 exp (ks [l — )% + (n — 1)s?))

Thus
M|0'273/NN@702/”) U2|y~ Inv—XQ(n—l,SQ).
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i
Marginal posterior for u

The marginal posterior for y is
uly ~ ta1(y,s°/n).

An equal-tailed 100(1 — )% credible interval can be obtained via

y+ tn—l,l—a/Qs/\/ﬁ'

This formula is exactly the same as the formula for a 100(1 — «/2)% confidence interval. But
the interpretation of this credible interval is a statement about your belief when your prior
belief is represented by the prior p(u,0?) o< 1/02.
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Priors
Predictive distribution

Let § ~ N(u,0?). The predictive distribution is

p(jly) = // (71, o2 p(plo?, y)p(a?|y)dpdo®

The easiest way to derive this is to write § = p + € with
plo®y ~ N(G,0°/n)  elo®,y ~ N(0,0%)
independent of each other. Thus
glo® y ~ N(g,o?[1 +1/n]).
with 02|y ~ Inv-x%(n — 1,5%). Now, we can use the Normal-Inv-x? theory, to find that
gly ~ ta-1(7, s*[1 +1/n]).
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Conjugate prior for 1 and o2
The joint conjugate prior for 1 and o2 is
plo®  ~ N(m,o?/k) o?  ~lnv-x?(v, 2?)
2

where 22 serves as a prior guess about o2 and v controls how certain we are about that guess.

The posterior under this prior is

,u]aQ,yNN(m’,aQ/k’) 02|y~ Inv—X2(v', (z')2)

where
E =k+n
m' = [km + ny]/K
v o=v+n
V()2 =w2l+ (n—1)S? + B (g — m)?
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Univariate normal Priors

Marginal posterior for u

The marginal posterior for i is
ply ~ to (', (') /K").

An equal-tailed 100(1 — «))% credible inteval can be obtained via

m' + tv’,l—a/QZ,/\/y-
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Univariate normal Priors

Marginal posterior via simulation

An alternative to deriving the closed form posterior for i is to simulate from the distribution.
Recall that

u]02, y~ N(m/, 02/k/) a2|y ~ |nv—x2(v/, (z/)2)

To obtain a simulation from the posterior distribution p(u, o2|y), calculate m/, k', v’, and 2’
and then

1. simulate 02 ~ Inv-x2(¢, (2')?) and
2. using the simulated o2, simulate u ~ N(m/, 02 /k').

Not only does this provide a sample from the joint distribution for u, o but it also (therefore)
provides a sample from the marginal distribution for . The integral was suggestive:

p(uly) = / p(plo?, y)p(0?ly)do?
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Univariate normal Priors

Predictive distribution via simulation

Similarly, we can obtain the predictive distribution via simulation. Recall that

p(jly) = // (1, o2)p(plo?, y)p(a?|y)dudo?

To obtain a simulation from the predictive distribution p(g|y), calculate m’, k', v’ and 2’
1. simulate 02 ~ Inv-x2(v', (2')?),
2. using this 02, simulate yu ~ N(m/,0%/k'), and
3. using these p and o2, simulate § ~ N(u,0?).
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Univariate normal Priors

Summary of normal inference
@ Default analysis
e Prior: (think p ~ N(0,00) and 02 ~ Inv-x%(0,0))
p(p,0?) o< 1/0?
e Posterior:
plo®,y ~ N(g,0?/n), oy ~ Inv-x*(n — 1,8%), ply ~ tu-1(y, 5%/n)
o Conjugate analysis

o Prior:
,LL|02 ~ N(m, 0'2/]{7), o? ~ Inv—x2(v, ZQ); B~ tv(m722/k)
e Posterior:
:U'|J27 Yy~ N(m/v 02/k/)7 02|y ~ InV‘X2(U/» (Z,)2)7 N‘y ~ tv’(mlv (Zl)2/k/)
with

K =k+nm' =[km+nyl/k v =v+n,

kn
1 N2 2 2 — 2
V() =vz"+(n—-1)S +—k/(y7m)
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