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@ Multinomial
@ Multivariate normal

e Unknown mean
e Unknown mean and covariance

In the process, we'll introduce the following distributions
o Multinomial

Dirichlet

Multivariate normal

Inverse Wishart (and Wishart)

normal-inverse Wishart distribution
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Multinomial

Motivating examples

Multivariate count data:
@ Item-response (Likert scale)

Shagely Disagree [Undecided| Agree Stronely

Disagree Agree

Scale Week is a worthwhile feature]
O O O ® O

on The Research Bunker Blog,

I would like to read more|
O O O O ®

posts about survey rating scales,

Vance Marriner is, without a doubt,)

the most insightful contributo . O O O O

to The Research Bunker Blog,

e Voting
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Multinomial

Multinomial distribution

Suppose there are K categories and each individual independently chooses category k with
probability 7, such that S7r 7 = 1. Let

e Y, €{0,1,...,n} be the number of individuals who choose category k
e with n = Zszl Y. being the total number of individuals.

Then Y = (Y1,...,Yxk) has a multinomial distribution, i.e. Y ~ Mult(n, ), with probability
mass function (pmf)

k
o1 Ik
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Multinomial

Properties of the multinomial distribution

The multinomial distribution with pmf:

k W’Z:k
ply)=nl|]
,};[1 Yr!

has the following properties:
o E[Y)] =nmy
o Var[Yy] = nmi(1 — my)
o CovlYy, Y] = —nmpmy for k £k

Marginally, each component of a multinomial distribution is a binomial distribution with
Yy ~ Bin(n, ).
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Multinomial

Dirichlet distribution

Let # = (1,..., 7K ) have a Dirichlet distribution, i.e. ™ ~ Dir(a), with concentration
parameter a = (ay,...,ax) where a; > 0 for all k.

The probability density function (pdf) for 7 is

ap—1
p(7) Beta H Tk

with S7% | 7, = 1 and Beta(a) is the beta function, i.e.

K
1
Beta(a) = %(ak).
P2 k=1 o)
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Properties of the Dirichlet distribution

The Dirichlet distribution with pdf

K
p(m) o [T mp™
k=1

has the following properties (where ag = Zle ag):

o Elm] = &

o Varm] = e

—apQ/

® Covlme, mv] = Zxutny

Marginally, each component of a Dirichlet distribution is a beta distribution with
T ~ Be(ak, ap — ax,).
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Multinomial

Bayesian inference

The conjugate prior for a multinomial distribution, i.e. Y ~ Mult(n, ), with unknown
probability vector 7 is a Dirichlet distribution. The Jeffreys prior is a Dirichlet distribution with
ar, = 0.5 for all k. Some argue that for large K, this prior will put too much mass on rare
categories and would suggest the Dirichlet prior with a;, = 1/K for all k.

The posterior under a Dirichlet prior is

p(mly) o< p(y|m)p(m)
o [Ty ] [T m ]
= Hszl Wzﬁyk_l

Thus 7|y ~ Dir(a +y).
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Multivariate normal

Multivariate normal distribution

Let Y = (Y1,...,Yxk) have a multivariate normal distribution, i.e. Y ~ Ng(u,X) with mean
1 and variance-covariance matrix .

The probability density function (pdf) for Y is

) = 0 IS e (<3 - )5 - )
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Multivariate normal

Bivariate normal contours

Bivariate normal: correlation 0.8
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Multivariate normal

Properties of the multivariate normal distribution

The multivariate normal distribution has the following properties:

@ For any subvector Y of Y where k C {1,2,..., K} with [k| = d, we have Yx ~ Ny(pk, Xk k)
where

e Lk contains the corresponding elements from p and
o Yy k is the submatrix of ¥ constructed by extracting rows k and columns k.
o Cov[Yy, Yiw] = Zk i is the submatrix of ¥ constructed by extracting rows k and columns k’.

@ Conditional distributions are also normal, i.e. forkNk' =0
Yie ) | N Mk Yk Dk
Yk/ 0% ’ Ek’,k Ek’,k’

YilYoo =y ~ N (Mk + Zk,k’zlzl’k/ (Y — e )5 Dk — Sk ZE/{k/Zk/,k> .

then
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Multivariate normal

Representing independence in a multivariate normal

Let Y ~ N(u,X) with precision matrix Q = 31,
o If 3 » = 0, then Y}, and Y}, are independent of each other.

o If Q. ;» =0, then Y}, and Y}, are conditionally independent of each other given Y; for
j# kK.
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Multivariate normal Unknown mean

Default inference with an unknown mean

ind

Let Y; ~ Ng(u,S) with default prior p(p) o< 1 where Y; = (Yi1, ..., Yik), then

)
p(ply) o p(ylp)p(p)
o

ocexp(

% (i — ) TS i — )
—exp( 5tr( -1

So))

where
n

So=> (wi—myi—-m'.
i=1
This posterior is proper if n > 1 (text has a typo) and, in that case, is

:U"y ~ Nk (gv S/n) :
where this ¥ = (¥, ...,Yx) has elements

1 n
Y = - Z?ik-
i=1
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Multivariate normal Unknown mean

Conjugate inference with an unknown mean

Let Y; g N(u, S) with conjugate prior u ~ Ng(m,C)
p(uly) o< plylu)p(p)
o< exp (—3 ;?:1(.% — ) Sy — )
xexp (g —m) C~ (i —m))
= o (3 ) O )
and thus
puly ~ N(m',C")

where )
' = [C‘l +nS‘1]_

m' =C'[C7'm+nS'y].
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Multivariate normal Unknown mean

Inverse Wishart distribution

Let the K x K matrix ¥ have an inverse Wishart distribution, i.e. ¥ ~ IW (v, W‘l), with
degrees of freedom v > K — 1 and positive definite scale matrix W.

The pdf for X is
p(¥) o ‘E’—(v-l-K—i-l)/? exp (—;tr (W2_1)> _
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Multivariate normal Unknown mean

Properties of the inverse Wishart distribution

The inverse Wishart distribution with pdf
1
p(¥) ‘E’*(erKJrl)/? exp <—2tr (W21)> _

has the following properties:
0 E[¥]=(w—-K-1)"'W forv> K + 1.
o Marginally, 02 = Xy ~ Inv — x*(v, Wgg).
o If a K x K matrix X! has a Wishart distribution, i.e. 71 ~ Wishart(v, W), then
Y~ IW (v, W),
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Multivariate normal Unknown mean

Normal-inverse Wishart distribution

A multivariate generalization of the normal-scaled-inverse-x? distribution is the normal-inverse

Wishart distribution. For a vector u € RE and K x K matrix X, the normal-inverse Wishart
distribution is

plX ~ N(m,%/c)
Y~ IW (o, W™

The marginal distribution for p, i.e.
p(0 = [ PSSz
is a multivariate t-distribution, i.e.

po~ tysepr (m, W/le(v — K+ 1)]).
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Multivariate normal Unknown mean and covariance

Conjugate inference with unknown mean and covariance

ind

Let Y; ~ N(u,X) with conjugate prior
plX ~ Nm,2/c) B~ IW (v, W1
which has pdf

P02 o[22 e (= SrVET) = £ )T ) )

The posterior is a normal-inverse Wishart with parameters

/

¢ =c+n
v =v4n
m =Sm+ 5y

W =W+S5+%@FG-—m)yg—m)"

where

S = Z yz - yz y)T
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Multivariate normal Unknown mean and covariance

Default inference with unknown mean and covariance

@ The prior ¥ ~ IW (K + 1,1) is non-informative in the sense that marginally each
correlation has a uniform distribution on (-1,1).

@ The prior
p(p, X) o [B|7FHD/2,

which can be thought of as a normal-inverse-Wishart distribution with ¢ — 0, v — —1,
and |WW| — 0, results in the posterior distribution

uEy ~ Ny, E/n)
Sly ~IW(n—1,871).
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Multivariate normal Unknown mean and covariance

Issues with the inverse Wishart distribution

@ Marginals of the IW have an IG (or scaled-inverse-x?2) distribution and therefore inherit the low density near zero
resulting in a (possible) bias for small variances toward larger values.

@ Due to the above issue, and the relationship between the variances and the correlations
(http://www.themattsimpson.com/2012/08/20/
prior-distributions-for-covariance-matrices-the-scaled-inverse-wishart-prior/), the correlations can
be biased:

e small variances imply small correlations
o large variances imply large correlations

Remedies:
@ Don't blindly use I for the scale matrix in an IW, instead use a reasonable diagonal matrix for your data set.
@ Use the scaled Inverse wishart distribution (see pg 74)

@ Use the separation strategy, i.e. ¥ = AAA where A is diagonal and A is a correlation matrix, where you specify the
standard deviations (or variances) and correlations separately. In this case, Gelman recommends putting the LKJ
prior (see page 582) on the correlation matrix.
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