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Theoretical justification for hierarchical models Exchangability

Exchangeability

Definition

The set Y1, Y2, . . . , Yn is exchangeable if the joint probability p(y1, . . . , yn) is invariant to
permutation of the indices. That is, for any permutation π,

p(y1, . . . , yn) = p(yπ1 , . . . , yπn).

An exchangeable but not iid example:

Consider an urn with one red ball and one blue ball with probability 1/2 of drawing either.

Draw without replacement from the urn.

Let Yi = 1 if the ith ball is red and otherwise Yi = 0.

Since 1/2 = P (Y1 = 1, Y2 = 0) = P (Y1 = 0, Y2 = 1) = 1/2, Y1 and Y2 are exchangeable.

But 0 = P (Y2 = 1|Y1 = 1) ̸= P (Y2 = 1) = 1/2 and thus Y1 and Y2 are not independent.
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Theoretical justification for hierarchical models Exchangability

Exchangeability

Theorem

All independent and identically distributed random variables are exchangeable.

Proof.

Let yi
ind∼ p(y), then

p(y1, . . . , yn) =

n∏
i=1

p(yi) =

n∏
i=1

p(yπi) = p(yπ1 , . . . , yπn)

Definition

The sequence Y1, Y2, . . . is infinitely exchangeable if, for any n, Y1, Y2, . . . , Yn are
exchangeable.
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Theoretical justification for hierarchical models de Finetti’s theorem

de Finetti’s theorem

Theorem

A sequence of random variables (y1, y2, . . .) is infinitely exchangeable iff, for all n,

p(y1, y2, . . . , yn) =

∫ n∏
i=1

p(yi|θ)P (dθ),

for some measure P on θ.

If the distribution on θ has a density, we can replace P (dθ) with p(θ)dθ.

This means that there must exist

a parameter θ,

a likelihood p(y|θ) such that yi
ind∼ p(y|θ), and

a distribution P on θ.
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Theoretical justification for hierarchical models Hierarchical models

Application to hierarchical models

Assume (y1, y2, . . .) are infinitely exchangeable, then by de Finetti’s theorem for the
(y1, . . . , yn) that you actually observed, there exists

a parameter θ,

a distribution p(y|θ) such that yi
ind∼ p(y|θ), and

a distribution P on θ.

Assume θ = (θ1, θ2, . . .) with θi infinitely exchangeable. By de Finetti’s theorem for
(θ1, . . . , θn), there exists

a parameter ϕ,

a distribution p(θ|ϕ) such that θi
ind∼ p(θ|ϕ), and

a distribution P on ϕ.

Assume ϕ = ϕ with ϕ ∼ p(ϕ).
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Theoretical justification for hierarchical models Covariate information

Exchangeability with covariates

Suppose we observe yi observations and xi covariates for each unit i. Now we assume
(y1, y2, . . .) are infinitely exchangeable given xi, then by de Finetti’s theorem for the
(y1, . . . , yn), there exists

a parameter θ,

a distribution p(y|θ, x) such that yi
ind∼ p(y|θ, xi), and

a distribution P on θ given x.

Assume θ = (θ1, θ2, . . .) with θi infinitely exchangeable given x. By de Finetti’s theorem for
(θ1, . . . , θn), there exists

a parameter ϕ,

a distribution p(θ|ϕ, x) such that θi
ind∼ p(θ|ϕ, xi), and

a distribution P on ϕ given x.

Assume ϕ = ϕ with ϕ ∼ p(ϕ|x).
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Summary

Summary

Hierarchical model:

yij
ind∼ p(y|θi), θi

ind∼ p(θ|ϕ), ϕ ∼ p(ϕ)

Hierarchical linear model:

yij
ind∼ p(y|θi, xij), θi

ind∼ p(θ|ϕ, xi), ϕ ∼ p(ϕ|x)

Although hierarchical models are typically written using the conditional independence notation
above, the assumptions underlying the model are exchangeability and functional forms for the
priors.
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Normal hierarchical models

Normal hierarchical models

Suppose we have the following model

yij
ind∼ N(θi, s

2)

θi
ind∼ N(µ, τ2)

with j = 1, . . . , ni, i = 1, . . . , I, and n =
∑I

i=1 ni. This is a normal hierarchical model.

Make the following assumptions for computational reasons:

s2 is known,

assume p(µ, τ) ∝ p(µ|τ)p(τ) ∝ p(τ), i.e. assume an improper uniform prior on µ.

Jarad Niemi (STAT544@ISU) Hierarchical models (cont.) February 19, 2024 9 / 21



Normal hierarchical models Posterior

Posterior distribution

The posterior is
p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ|τ)p(τ)

but the decomposition
p(θ, µ, τ |y) = p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

where
p(θ|µ, τ, y) ∝ p(y|θ)p(θ|µ, τ)
p(µ|τ, y) ∝

∫
p(y|θ)p(θ|µ, τ)dθ p(µ|τ)

p(τ |y) ∝
∫
p(y|θ)p(θ|µ, τ)p(µ|τ)dθdµ p(τ)

will aide computation via

1. τ (k) ∼ p (τ |y)
2. µ(k) ∼ p

(
µ|τ (k), y

)
3. θ

(k)
i

ind∼ p
(
θ|µ(k), τ (k), y

)
for i = 1, . . . , I.
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Normal hierarchical models Posterior

Posterior distributions

The necessary conditional and marginal posteriors are presented in Section 5.4 of BDA3. Let

yi· =
1

ni

ni∑
j=1

yij and s2i = s2/ni

Then
p(τ |y) ∝ p(τ)V

1/2
µ

∏I
i=1(s

2
i + τ2)−1/2 exp

(
− (yi·−µ̂)2

2(s2i+τ2)

)
µ|τ, y ∼ N(µ̂, Vµ)

θi|µ, τ, y
ind∼ N(θ̂i, Vi)

V −1
µ =

∑I
i=1

1
s2i+τ2

µ̂ = Vµ

(∑I
i=1

y·i
s2i+τ2

)
V −1
i = 1

s2i
+ 1

τ2
θ̂i = Vi

(
yi·
s2i

+ µ
τ2

)
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Normal hierarchical models Simulation study

Simulation study

Common to both simulation scenarios:

I = 10

ni = 9 for all i

s = 1 thus si = 1/3 for all i

Scenarios:

1. Common mean: θi = 0 for all i

2. Group-specific means: θi = i− (I/2 + .5)

Use τ ∼ Ca+(0, 1).
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Normal hierarchical models Simulation study

Simulation study

J <- 10

n_per_group <- 9

n <- rep(n_per_group,J)

sigma <- 1

N <- sum(n)

group <- rep(1:J, each=n_per_group)

set.seed(1)

df <- bind_rows(data.frame(group = factor(group),

simulation = "common_mean",

y = rnorm(N )), # All means are the same

data.frame(group = factor(group),

simulation = "group_specific_mean",

y = rnorm(N, group-(J/2+.5)))) # Each group has its own mean
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Normal hierarchical models Simulation study
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Normal hierarchical models Simulation study

Summary statistics

simulation group n mean sd
common mean 1 9 0.18 0.81
common mean 2 9 0.09 1.11
common mean 3 9 0.18 0.91
common mean 4 9 -0.19 0.89
common mean 5 9 0.17 0.62
common mean 6 9 0.02 0.70
common mean 7 9 0.61 1.14
common mean 8 9 0.14 1.19
common mean 9 9 -0.31 0.60
common mean 10 9 0.20 0.81
group specific mean 1 9 -4.32 1.10
group specific mean 2 9 -3.40 0.88
group specific mean 3 9 -2.41 0.89
group specific mean 4 9 -1.38 0.60
group specific mean 5 9 -0.76 0.61
group specific mean 6 9 -0.16 0.95
group specific mean 7 9 1.21 1.12
group specific mean 8 9 2.23 1.15
group specific mean 9 9 3.97 1.26
group specific mean 10 9 5.08 0.77
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Normal hierarchical models Sampling on a grid

Sampling on a grid

Consider sampling from an arbitrary unnormalized density f(τ) ∝ p(τ |y) using the following
approach

1. Construct a step-function approximation to this density:

a. Determine an interval [L,U ] such that outside this interval f(τ) is small.
b. Set an interval half-width h to generate a grid of M points (x1, . . . , xM ) in this interval, i.e.

x1 = L+ h and xm = xm−1 + 2h ∀ 1 < m ≤ M.

c. Evaluate the density on this grid, i.e. f(xm).

d. Normalize interval weights, i.e. wm = f(xm)
/∑M

i=1 f(xi)

(to construct a normalized density, divide each wm by 2h.).

2. Sampling from this approximation:

a. Sample an interval m with probability wm.
b. Sample uniformly within this interval, i.e. τ ∼ Unif(xm − h, xm + h).

Jarad Niemi (STAT544@ISU) Hierarchical models (cont.) February 19, 2024 16 / 21



Normal hierarchical models Sampling on a grid

Approximation to p(τ |y) when τ ∼ Ca+(0, 1)
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Normal hierarchical models Sampling on a grid

Hyperparameters: group-to-group mean variability

Recall θi
ind∼ N(µ, τ2):
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Normal hierarchical models Sampling on a grid

Group-specific means

Recall

Common mean: E[Yij ] = µ

Group-specific mean: E[Yij ] = i− 10/2 + 0.5
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Normal hierarchical models Summary

Extensions

Unknown data variance:

yij
ind∼ N(θi, σ

2), θi
ind∼ N(µ, τ2)

or
yij

ind∼ N(θi, σ
2), θi

ind∼ N(µ, σ2τ2)

Alternative hierarchical distributions:

Heavy-tailed:

θi
ind∼ tν(µ, τ

2)

Peak at zero:
θi

ind∼ Laplace(µ, τ2)

Point mass at zero:
θi

ind∼ πδ0 + (1− π)N(µ, τ2)
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Normal hierarchical models Summary

Summary

Hierarchical models

allow the data to inform us about similarities across groups

provide data driven shrinkage toward a grand mean

lots of shrinkage when means are similar
little shrinkage when means are different

Computation used the decomposition

p(θ, µ, τ |y) = p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

which allowed for simulation from τ then µ and then θ to obtain samples from the posterior.
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