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Exchangabilty
Exchangeability

Definition

The set Y7,Y5,...,Y,, is exchangeable if the joint probability p(y1,...,yy) is invariant to
permutation of the indices. That is, for any permutation T,

P15 Un) = PWmys - - o5 Yy )-

An exchangeable but not iid example:

Consider an urn with one red ball and one blue ball with probability 1/2 of drawing either.
Draw without replacement from the urn.

Let Y; = 1 if the ith ball is red and otherwise Y; = 0.
Since1/2=P(Y1=1,Y2=0)=P(Y1 =0,Y2 =1) =1/2, Y] and Y3 are exchangeable.
But 0= P(Yo =1|Y; =1) # P(Yo = 1) = 1/2 and thus Y7 and Y5 are not independent.
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Theoretical justification for hierarchical models Exchangability

Exchangeability

Theorem

All independent and identically distributed random variables are exchangeable.

Proof.
Let y; nd p(y), then

n n

p(yb e 7yn) = Hp(yi) = Hp(ym) :p(ymv .- "yﬂ'n)

Definition
The sequence Y7,Y5, ..

. is infinitely exchangeable if, for any n, Y7, Y5,
exchangeable.

.., Y, are
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Theoretical justification for hierarchical models [sENSTTSATRR,IEIIEE]

de Finetti’'s theorem

Theorem

A sequence of random variables (y1,vys, . ..) is infinitely exchangeable iff, for all n,

pones ) = [ T]wlo)p(as),

for some measure P on 6.

If the distribution on 6 has a density, we can replace P(df) with p(6)d6.
This means that there must exist

@ a parameter 6,

o a likelihood p(y|6) such that y; ' p(y|6), and

@ a distribution P on 6.
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Theoretical justification for hierarchical models Hierarchical models

Application to hierarchical models

Assume (y1,¥2,-..) are infinitely exchangeable, then by de Finetti's theorem for the
(y1,-..,Yn) that you actually observed, there exists

@ a parameter 6,

@ a distribution p(y|@) such that y; nd p(y|0), and
@ a distribution P on 6.

Assume 0 = (01,02, ...) with 0; infinitely exchangeable. By de Finetti's theorem for
(01,...,60,), there exists

@ a parameter ¢,
@ a distribution p(#|¢) such that 6; g p(0]¢), and
@ a distribution P on ¢.

Assume ¢ = ¢ with ¢ ~ p(¢).
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Theoretical justification for hierarchical models Covariate information

Exchangeability with covariates

Suppose we observe 1; observations and x; covariates for each unit i. Now we assume

(y1,Y2, .. .) are infinitely exchangeable given z;, then by de Finetti's theorem for the
(Y1,--.,Yn), there exists

@ a parameter 6,

@ a distribution p(y|@, x) such that y; nd p(y|0,x;), and
@ a distribution P on 6 given z.

Assume 0 = (01,02, ...) with 0; infinitely exchangeable given . By de Finetti's theorem for
(01,...,60,), there exists

@ a parameter ¢,

@ a distribution p(0|¢, ) such that 6; ind p(0|p, x;), and
@ a distribution P on ¢ given x.
Assume ¢ = ¢ with ¢ ~ p(¢|z).
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Summary

Hierarchical model:
ind ind
yi; ~ p(yl6:), 0 ~ p(6ld), &~ p(e)
Hierarchical linear model:

ind ind

Although hierarchical models are typically written using the conditional independence notation
above, the assumptions underlying the model are exchangeability and functional forms for the
priors.
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Normal hierarchical models

Normal hierarchical models

Suppose we have the following model

ind
vij ~ N(6;,5%)

02‘ i’n\’d N(,LL,T2)
with j=1,...,n;,¢=1,...,1,and n = ZZI':1 n;. This is a normal hierarchical model.

Make the following assumptions for computational reasons:
@ s2 is known,

@ assume p(p, 7) < p(u|T)p(T) o p(7), i.e. assume an improper uniform prior on .
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Normal hierarchical models Posterior

Posterior distribution

The posterior is
p(0, i, Tly) o< p(y|0)p(O|w, 7)p(ulT)p(T)
but the decomposition
p(0, 11, 7ly) = p(Olp, 7, y)p(plT, y)p(TlY)
where
PO, 7, y) o p(yl@)p(O|u, T)
plplmy) o [ p(yl0)p(6]p, 7)d0 p(u|T)
p(7ly) o [ p(yl0)p(0], T)p(p|)dOdp p(7)

will aide computation via
L 7™~ p(r]y)
2. ™~ p (plr®)y)
3. ng) %dp (9|u(k),7(k),y) fori=1,...,L
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Normal hierarchical models Posterior

Posterior distributions

The necessary conditional and marginal posteriors are presented in Section 5.4 of BDA3. Let

1 &
— 2 2
Ui = - g Yij and s; = s°/n;
3 =1

Then
prl) < PV Ty o+ 7)1/ exp ({3t
M|7_7y ~ N(ﬂv Vu)

91‘,“’7 Y iﬁ'd N(é’u ‘/’L)

-1 I 1 N I Y.
Vu = Zi:l 2472 po="Vy (Zi:l 3124'272)
-1 _ 1, 1 4. — 1 (Y 4 M
Vi _sf+T2 0i _W(s%+72>
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Normal hierarchical models Simulation study

Simulation study

Common to both simulation scenarios:
e I=10
o n; =9 foralli

@ s=1thus s; =1/3 for all i

Scenarios:
1. Common mean: 6; = 0 for all i
2. Group-specific means: 6; =i — (I/2 + .5)

Use 7 ~ Ca™(0,1).
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Normal hierarchical models EESIIUTIEVIHES T

Simulation study

J <- 10

n_per_group <- 9

n <- rep(n_per_group,J)

sigma <- 1

N <- sum(n)

group <- rep(1:J, each=n_per_group)

set.seed(1)
df <- bind_rows(data.frame(group = factor(group),

simulation = "common_mean",

y = rnorm(N ),
data.frame(group = factor(group),

simulation = "group_specific_mean",

y = rnorm(N, group-(J/2+.5))))
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Normal hierarchical models EESIIUTIEVIHES T
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Normal hierarchical models Simulation study

Summary statistics

simulation group n mean sd
common._mean 1 9 0.18 0.81
common._mean 2 9 0.09 1.11
common._mean 3 9 0.18 0.91
common._mean 4 9 -0.19 0.89
common._mean 5 9 0.17 0.62
common._mean 6 9 0.02 0.70
common._mean 7 9 0.61 1.14
common._mean 8 9 0.14 1.19
common_mean 9 9 -0.31 0.60
common_mean 10 9 0.20 0.81
group_specific_mean 1 9 -4.32 1.10
group_specific_-mean 2 9 -3.40 0.88
group-specific_mean 3 9 -2.41 0.89
group-specific_-mean 4 9 -1.38 0.60
group_specific_.mean 5 9 -0.76 0.61
group_specific_.mean 6 9 -0.16 0.95
group_specific_.mean 7 9 1.21 1.12
group_specific_.mean 8 9 2.23 1.15
group_specific_mean 9 9 3.97 1.26
group_specific_.mean 10 9 5.08 0.77
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Sampling on a grid
Sampling on a grid

Consider sampling from an arbitrary unnormalized density f(7) o p(7|y) using the following
approach
1. Construct a step-function approximation to this density:

a. Determine an interval [L, U] such that outside this interval f(7) is small.
b. Set an interval half-width h to generate a grid of M points (x1,...,2) in this interval, i.e.

r1=L+handz,, =2,,_1+2h VIi<m<M.

c. Evaluate the density on this grid, i.e. f(z,).
d. Normalize interval weights, i.e. Wy, = f(zm) /Zi:l f(z)
(to construct a normalized density, divide each w,, by 2h.).
2. Sampling from this approximation:

a. Sample an interval m with probability w,,.
b. Sample uniformly within this interval, i.e. 7 ~ Unif(x,, — h, zy + h).
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Sampling on 2 grd
Approximation to p(7|y) when 7 ~ Ca™(0, 1)

common_mean group_specific_mean
24
o
14
| L
0.0 25 5.0 75 100 0.0 25 5.0 75 10.0
x—-h
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Normal hierarchical models [SERITY-RTIER={gl<}

Hyperparameters: group-to-group mean variability

Recall 0; "™ N(u, 72):

mu

tau

ueaw” uowwoo

density
<

0.24

0.0 - =

ds™dnol

'eaw 91109
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Normal hierarchical models Sampling on a grid

Group-specific means

Recall

e Common mean: E[Yj;] =p

e Group-specific mean: E[Y;;] =i —10/2+ 0.5

common_mean

group_specific_mean
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Normal hierarchical models Summary

Extensions

@ Unknown data variance:
ind 2 ind 2
yijNN(giao-)79iNN(ﬂa7—)

or
ind ind
Yij ~ N(0;,0°), 0; % N(u,o*?)
@ Alternative hierarchical distributions:
o Heavy-tailed:

ind

975 ~ tu(,“? T2)

o Peak at zero: o
0; ‘X" Laplace(p, 7%)
e Point mass at zero:

ind

0; "~ w4+ (1 — m)N(p, %)
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Normal hierarchical models Summary

Summary

Hierarchical models

@ allow the data to inform us about similarities across groups
@ provide data driven shrinkage toward a grand mean

o lots of shrinkage when means are similar
o little shrinkage when means are different

Computation used the decomposition

p(0, 1, Tly) = p(Op, 7, y)p(u| 7, y)p(7|Yy)

which allowed for simulation from 7 then p and then 6 to obtain samples from the posterior.
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