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Jarad Niemi (STAT544@ISU) Bayesian hypothesis testing February 22, 2024 2 / 25



Scientific method

http://www.wired.com/wiredscience/2013/04/whats-wrong-with-the-scientific-method/
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Statistical hypothesis testing

Statistical hypothesis testing

Definition

A simple hypothesis specifies the value for all parameters of interest while a composite
hypothesis does not.

Let Yi
ind∼ Ber(θ) and

H0 : θ = 0.5 (simple)

H1 : θ 6= 0.5 (composite)
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Statistical hypothesis testing

Prior probabilities on simple hypotheses

What is your prior probability for the following hypotheses:

a coin flip has exactly 0.5 probability of landing heads

a fertilizer treatment has zero effect on plant growth

inactivation of a mouse growth gene has zero effect on mouse hair color

a butterfly flapping its wings in Australia has no effect on temperature in Ames

guessing the color of a card drawn from a deck has probability 0.5

Many null hypotheses have zero probability a priori, so why bother performing the hypothesis
test?
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Statistical hypothesis testing All simple hypotheses

Bayesian hypothesis testing with all simple hypotheses

Let Y ∼ p(y|θ) and Hj : θ = dj for j = 1, . . . , J . Treat this as a discrete prior on the dj , i.e.

P (θ = dj) = pj .

The posterior is then

P (θ = dj |y) =
pjp(y|dj)∑J
k=1 pkp(y|dk)

∝ pjp(y|dj).

For example, suppose Yi
ind∼ Ber(θ) and P (θ = dj) = 1/11 where dj = j/10 for j = 0, . . . , 10.

The posterior is

P (θ = dj |y) ∝
1

11

n∏
i=1

(dj)
yi(1− dj)1−yi = (dj)

ny(1− dj)n(1−y)

If j = 0 (j = 10), any yi = 1 (yi = 0) will make the posterior probability of H0 (H1) zero.
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Statistical hypothesis testing All simple hypotheses

Discrete prior example

n = 13; y = rbinom(n,1,.45); sum(y)
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Statistical hypothesis testing All composite hypotheses

Bayesian hypothesis testing with all composite hypotheses

Let Y ∼ p(y|θ) and Hj : θ ∈ (Ej−1, Ej ] for j = 1, . . . , J . Just calculate the area under the
curve, i.e. prior probabilities are

P (Hj) = P (Ej−1 < θ < Ej) =

∫ Ej

Ej−1

p(θ)dθ.

and posterior probabilities are

P (Hj |y) = P (Ej−1 < θ < Ej |y) =
∫ Ej

Ej−1

p(θ|y)dθ

For example, suppose Yi
ind∼ Ber(θ) and Ej = j/10 for j = 0, . . . , 10. Now, assume

θ ∼ Be(1, 1) and thus θ|y ∼ Be(1 + ny, 1 + n[1− y]).
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Statistical hypothesis testing All composite hypotheses

Beta example

The posterior probabilities are
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Posterior propriety Tonelli’s Theorem

Tonelli’s Theorem (successor to Fubini’s Theorem)

Theorem

Tonelli’s Theorem states that if X and Y are σ-finite measure spaces and f is non-negative
and measureable, then ∫

X

∫
Y
f(x, y)dydx =

∫
Y

∫
X
f(x, y)dxdy

i.e. you can interchange the integrals (or sums).

On the following slides, the use of this theorem will be indicated by TT.
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Posterior propriety Proper priors

Proper priors with discrete data

Theorem

If the prior is proper and the data are discrete, then the posterior is always proper.

Proof.

Let p(θ) be the prior and p(y|θ) be the statistical model. Thus, we need to show that

p(y) =

∫
Θ

p(y|θ)p(θ)dθ <∞ ∀y.

For discrete y, we have

p(y) ≤
∑

z∈Y p(z) =
∑

z∈Y
∫
Θ
p(z|θ)p(θ)dθ TT

=
∫
Θ

∑
z∈Y p(z|θ)p(θ)dθ

=
∫
Θ
p(θ)dθ = 1.

Thus the posterior is always proper if y is discrete and the prior is proper.
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Posterior propriety Proper priors

Proper priors with continuous data

Theorem

If the prior is proper and the data are continuous, then the posterior is almost always proper.

Proof.

Let p(θ) be the prior and p(y|θ) be the statistical model. Thus, we need to show that

p(y) =

∫
Θ

p(y|θ)p(θ)dθ <∞ for almost all y.

For continuous y, we have∫
Y p(z)dz =

∫
Y
∫
Θ
p(z|θ)p(θ)dθdz TT

=
∫
Θ

∫
Y p(z|θ)dz p(θ)dθ =

∫
Θ
p(θ)dθ = 1

thus p(y) is finite except on a set of measure zero, i.e. p(θ|y) is almost always proper.
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Posterior propriety Propriety of prior predictive distributions

Proper prior predictive distributions

In the previous derivations when the prior is proper, we showed that∑
z∈Y

p(z) = 1 and

∫
Y
p(z)dz = 1

for discrete and continuous data, respectively.

Corollary

When the prior is proper, the prior predictive distribution is also proper.
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Posterior propriety Propriety of prior predictive distributions

Improper prior predictive distributions

Theorem

If p(θ) is improper, then p(y) =
∫
p(y|θ)p(θ)dθ is improper.

Proof. ∫
p(y)dy =

∫ ∫
p(y|θ)p(θ)dθdy TT

=
∫
p(θ)

∫
p(y|θ)dydθ

=
∫
p(θ)dθ

since p(θ) is improper, so is p(y). A similar result holds for discrete y replacing the integral
with a sum.
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Bayesian hypothesis testing

Bayesian hypothesis testing

To evaluate the relative plausibility of a hypothesis (model), we use the posterior model
probability:

p(Hj |y) =
p(y|Hj)p(Hj)

p(y)
=

p(y|Hj)p(Hj)∑J
k=1 p(y|Hk)p(Hk)

∝ p(y|Hj)p(Hj).

where p(Hj) is the prior model probability and

p(y|Hj) =

∫
p(y|θ)p(θ|Hj)dθ

is the marginal likelihood under model Hj and p(θ|Hj) is the prior for parameters θ when
model Hj is true.
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Bayesian hypothesis testing

Marginal likelihood

The marginal likelihood calculation differs for simple vs composite hypotheses:

Simple hypotheses can be considered to have a Dirac delta function for a prior, e.g. if
H0 : θ = θ0 then θ|H0 ∼ δθ0 . Then the marginal likelihood is

p(y|H0) =

∫
p(y|θ)p(θ|H0)dθ = p(y|θ0).

Composite hypotheses have a continuous prior and thus

p(y|Hj) =

∫
p(y|θ)p(θ|Hj)dθ.
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Bayesian hypothesis testing

Two models

If we only have two models: H0 and H1, then

p(H0|y) =
p(y|H0)p(H0)

p(y|H0)p(H0) + p(y|H1)p(H1)
=

1

1 + p(y|H1)
p(y|H0)

p(H1)
p(H0)

where
p(H1)

p(H0)
=

p(H1)

1− p(H1)

is the prior odds in favor of H1 and

BF (H1 : H0) =
p(y|H1)

p(y|H0)
=

1

BF (H0 : H1)

is the Bayes Factor for model H1 relative to H0.
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Bayesian hypothesis testing Binomial model

Binomial model

Consider a coin flipping experiment so that Yi
ind∼ Ber(θ) and the null hypothesis H0 : θ = 0.5

versus the alternative H1 : θ 6= 0.5 and θ|H1 ∼ Be(a, b).

BF (H0 : H1) = 0.5n∫ 1
0 θ

ny(1−θ)n(1−y) θ
a−1(1−θ)b−1

Beta(a,b)
dθ

= 0.5n
1

Beta(a,b)

∫ 1
0 θ

a+ny−1(1−θ)b+n−ny−1θ

= 0.5n
Beta(a+ny,b+n−ny)

Beta(a,b)

= 0.5nBeta(a,b)
Beta(a+ny,b+n−ny)

and with p(H0) = p(H1) the posterior model probability is

P (H0|y) =
1

1 + 1
BF (H0:H1)

.
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Bayesian hypothesis testing Binomial model

Sample size and sample average

P (H0) = P (H1) = 0.5 and θ|H1 ∼ Be(1, 1):
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Bayesian hypothesis testing Binomial model

“Non-informative” prior

Recall that θ ∼ Be(a, b) has

a prior successes and

b prior failures.

Thus, in some sense a, b→ 0 puts minimal prior data into the analysis.

If θ|H1 ∼ Be(e, e), then

BF (H0 : H1) =
0.5nBe(e, e)

Be(e+ ny, e+ n− ny)
e→0−→∞ for any y ∈ (0, 1)

since Be(e, e)
e→0−→∞.
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Bayesian hypothesis testing Binomial model

Limit of proper prior

P (H0) = P (H1) = 0.5 and θ|H1 ∼ Be(e, e):
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Bayesian hypothesis testing Binomial model

Normal example

Consider the model Y ∼ N(θ, 1) and the hypothesis test

H0 : θ = 0 versus

H1 : θ 6= 0 with prior θ|H1 ∼ N(0, C).

The predictive distribution under H1 is

p(y|H1) =

∫
p(y|θ)p(θ|H1)dθ = N(y; 0, 1 + C)

and the Bayes factor is

BF (H0 : H1) =
N(y; 0, 1)

N(y; 0, 1 + C)
.

The Bayes factor will increase as C →∞ for any y and this only gets worse if you use an
improper prior.
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Bayesian hypothesis testing Binomial model

Normal example
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Bayesian hypothesis testing Binomial model

Summary

Treat hypothesis testing as parameter estimation

All simple hypotheses: discrete prior
All composite hypotheses: continuous prior

Formal Bayesian hypothesis testing
(simple and composite hypotheses)

Specify prior model probabilities
Specify parameter priors for composite hypotheses
WARNING: Do not use non-informative priors!
Calculate Bayes Factors or posterior model probabilities
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Bayesian hypothesis testing Binomial model

Scientific method updated

All models are wrong, but some are useful.

George Box 1987

http://www.wired.com/wiredscience/2013/04/whats-wrong-with-the-scientific-method/
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