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Bayes tests = evaluate predictive models

Consider a standard hypothesis test scenario:

H0 : θ = θ0, H1 : θ ̸= θ0

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

BF (H0 : H1) =
p(y|H0)

p(y|H1)
=

p(y|θ0)∫
p(y|θ)p(θ|H1)dθ

where p(θ|H1) is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor
measures the predictive ability of the two Bayesian models. Both models say p(y|θ) are the data model
if we know θ, but

1. Model 0 says θ = θ0 and thus p(y|θ0) is our predictive distribution for y under model H0 while

2. Model 1 says p(θ|H1) is our uncertainty about θ and thus

p(y|H1) =

∫
p(y|θ)p(θ|H1)dθ

is our predictive distribution for y under model H1.
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Normal example

Consider y ∼ N(θ, 1) and
H0 : θ = 0, H1 : θ ̸= 0

and we assume θ|H1 ∼ N(0, C). Thus,

BF (H0 : H1) =
p(y|H0)

p(y|H1)
=

p(y|θ0)∫
p(y|θ)p(θ|H1)dθ

=
N(y; 0, 1)

N(y; 0, 1 + C)
.

Now, as C → ∞, our predictions about y become less sharp.
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Likelihood Ratio Tests

Likelihood Ratio Tests

Consider a likelihood L(θ) = p(y|θ), then the likelihood ratio test statistic for testing
H0 : θ ∈ Θ0 and H1 : θ ∈ Θc

0 with Θ = Θ0 ∪Θc
0 is

λ(y) =
supΘ0

L(θ)

supΘL(θ)
=

L(θ̂0,MLE)

L(θ̂MLE)

where θ̂MLE and θ̂0,MLE are the (restricted) MLEs. The likelihood ratio test (LRT) is any test
that has a rejection region of the form {y : λ(y) ≤ c}. (Casella & Berger Def 8.2.1)

Under certain conditions (see Casella & Berger 10.3.3), as n → ∞

−2 log λ(y) → χ2
ν

where ν us the difference between the number of free parameters specified by θ ∈ θ0 and the
number of free parameters specified by θ ∈ Θ.
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Likelihood Ratio Tests Binomial example

Binomial example

Consider a coin flipping experiment so that Yi
iid∼ Ber(θ) and the null hypothesis H0 : θ = 0.5

versus the alternative H1 : θ ̸= 0.5. Then

λ(y) =
supΘ0

L(θ)

supΘL(θ)
=

0.5n

θ̂nyMLE(1− θ̂MLE)n−ny
=

0.5n

yny(1− y)n−ny

and −2 log λ(y) → χ2
1 as n → ∞ so

p-value ≈ P (χ2
1 > −2 log λ(y)).

If p-value< a, then we reject H0 at significance level a. Typically a = 0.05.
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Likelihood Ratio Tests Binomial example

Binomial example

Y ∼ Bin(n, θ) and, for the Bayesian analysis, θ|H1 ∼ Be(1, 1) and p(H0) = p(H1) = 0.5:

Likelihood ratio test pvalue Posterior probability
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Jeffrey-Lindley paradox

Do p-values and posterior probabilities agree?

Suppose n = 10, 000 and y = 4, 900, then the p-value is

p-value ≈ P (χ2
1 > −2 log(0.135)) = 0.045

so we would reject H0 at the 0.05 level.

The posterior probability of H0 is

p(H0|y) ≈
1

1 + 1/10.8
= 0.96,

so the probability of H0 being true is 96%.

It appears the Bayesian and LRT p-value completely disagree!
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Jeffrey-Lindley paradox

Binomial y = 0.49 with n → ∞
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Jeffrey-Lindley paradox Jeffrey-Lindley Paradox

Jeffrey-Lindley Paradox

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H0 and H1

given data y and find

a frequentist test result is significant leading to rejection of H0, but

our posterior belief in H0 being true is high.

This can happen when

the effect size is small,

n is large,

H0 is relatively precise,

H1 is relatively diffuse, and

the prior model odds is ≈ 1.
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Jeffrey-Lindley paradox Jeffrey-Lindley Paradox

Comparison

The test statistic with point null hypotheses:

λ(y) = p(y|θ0)
p(y|θ̂MLE)

BF (H0 : H1) = p(y|θ0)∫
p(y|θ)p(θ|H1)dθ

= p(y|H0)
p(y|H1)

A few comments:

The LRT chooses the best possible alternative value.

The Bayesian test penalizes for vagueness in the prior.

The LRT can be interpreted as a Bayesian point mass prior exactly at the MLE.

Generally, p-values provide a measure of lack-of-fit of the data to the null model.

Bayesian tests compare predictive performance of two Bayesian models (model+prior).
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Jeffrey-Lindley paradox Jeffrey-Lindley Paradox

Normal mean testing

Let y ∼ N(θ, 1) and we are testing

H0 : θ = 0 vs H1 : θ ̸= 0

We can compute a two-sided p-value via

p-value = 2Φ(−|y|)

where Φ(·) is the cumulative distribution function for a standard normal.

Typically, we set our Type I error rate at level a, i.e.

P (reject H0|H0 true) = a.

But, if we reject H0, i.e. the p-value < a, we should be interested in

P (H0 true|reject H0) = 1− FDR

where FDR is the False Discovery Rate.
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p-value interpretation App

p-value interpretation

Let y ∼ N(θ, 1) and we are testing

H0 : θ = 0 vs H1 : θ ̸= 0

For the following activity, you need to tell me

1. the observed p-value,

2. the relative frequencies of null and alternative hypotheses, and

3. the distribution for θ under the alternative.

Then this p-value app below will calculate (via simulation) the probability the null hypothesis
is true.

shiny::runGitHub('jarad/pvalue')
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p-value interpretation App approach

p-value app approach

The idea is that a scientist performs a series of experiments. For each experiment,

whether H0 or H1 is true is randomly determined,

θ is sampled according to which hypothesis is true, and

the p-value is calculated.

This process is repeated until a p-value of the desired value is achieved, e.g. p-value=0.05,
and the true hypothesis is recorded. Thus,

P (H0 true | p-value = 0.05) ≈ 1

K

K∑
k=1

I(H0 true | p-value ≈ 0.05).

Thus, there is nothing Bayesian happening here except that the probability being calculated
has the unknown quantity on the left and the known quantity on the right.
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p-value interpretation Prosecutor’s Fallacy

Prosecutor’s Fallacy

It is common for those using statistics to equate the following

p-value
?
≈ P (data|H0 true) ̸= P (H0 true|data).

but we can use Bayes rule to show us that these probabilities cannot be equated

p(H0|y) =
p(y|H0)p(H0)

p(y)
=

p(y|H0)p(H0)

p(y|H0)p(H0) + p(y|H1)p(H1)

This situation is common enough that it is called The Prosecutor’s Fallacy.
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p-value interpretation ASA Statement on p-values

ASA Statement on p-values

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

Principles:

1. P -values can indicate how incompatible the data are with a specified statistical model[, the model
associated with the null hypothesis].

2. P -values do not measure the probability the studied hypothesis is true, or the probability that the data
were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based solely on whether a p-value
passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of the result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.
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