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Bayesian statistician

Definition

A Bayesian statistician is an individual who makes decisions based on the
probability distribution of those things we don’t know conditional on what
we know, i.e.

p(θ|y,K).
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Bayesian decision theory

Bayesian decision theory

Suppose we have an unknown quantity θ which we believe follows a
probability distribution p(θ) and a decision (or action) δ. For each
decision, we have a loss function L(θ, δ) that describes how much we lose
if θ is the truth. The expected loss is taken with respect to θ ∼ p(θ), i.e.

Eθ[L(θ, δ)] =

∫
L(θ, δ)p(θ)dθ = f(δ).

The optimal Bayesian decision is to choose δ that minimizes the expected
loss, i.e.

δopt = argminδE[L(θ, δ)] = argminδf(δ).

Economists typically maximize expected utility where utility is the negative
of loss, i.e. U(θ, δ) = −L(θ, δ). If we have data, just replace the prior p(θ)
with the posterior p(θ|y).
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Bayesian decision theory

Depicting loss/utility functions
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Bayesian decision theory Parameter estimation

Parameter estimation

Definition

For a given loss function L(θ, θ̂) where θ̂ is an estimator for θ, the Bayes
estimator is the function θ̂ that minimizes the expected loss, i.e.

θ̂ = argminθ̂ Eθ|y

[
L
(
θ, θ̂
)∣∣∣ y] .

Recall that

θ̂ = E[θ|y] minimizes L(θ, θ̂) = (θ − θ̂)2

0.5 =
∫ θ̂
−∞ p(θ|y)dθ minimizes L(θ, θ̂) = |θ − θ̂|

θ̂ = argmaxθp(θ|y) is found as the minimizer of the sequence of loss
functions L(θ, θ̂) = −I(|θ − θ̂| < ε) as ε→ 0
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Bayesian decision theory Choosing a hand

Which hand?

The setup:

Randomly put a quarter in one of two hands with probability p.

Let θ ∈ {0, 1} indicate that the quarter is in the right hand.

You get to choose whether the quarter is in the right hand or not.

If you guess the quarter is in the right hand and it is, you get to keep the quarter.
Otherwise, you don’t get anything.

We have θ ∼ Ber(p) and two actions

a0: say the quarter is not in the right hand and

a1: say the quarter is in the right hand.

Thus, the utility is

U(θ, ai) =

{
$0.25θ if a1

0 if a0

and the expected utility is

E[U(θ, ai)] =

{
$0.25p if a1

0 if a0

So, we maximize expected utility by taking a1 if p > 0.
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Bayesian decision theory Choosing a hand

How many quarters in the jar?

Suppose a jar is filled up to a pre-specified line. Let θ be the number of
quarters in the jar. Provide a probability distribution for your uncertainty
in θ. Suppose you choose

θ ∼ N(µ, σ2)

Since θ ∈ N+, we can provide a formal prior by letting

P (θ = q) ∝ N(q;µ, σ2)I(0 < q ≤ U)

for some upper bound U .
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Bayesian decision theory Choosing a hand

Guessing how many quarters are in the jar.

Now you are asked to guess how many quarters are in the jar. What
should you guess?

Let q be the guess that the number of quarters is q, then our utility is

U(θ, q) = qI(θ = q)

and our expected utility is

Eθ[U(θ, q)] = qP (θ = q) ∝ qN(q;µ, σ2)I(0 ≤ q ≤ U).
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Bayesian decision theory Choosing a hand

Deriving the optimal decision

Here are three approaches for deriving the optimal decision:

argmaxqf(q), f(q) = qN(q;µ, σ2)I(0 ≤ q ≤ U)

1. Evaluate f(q) for q ∈ {1, 2, . . . , U} and find which one is the
maximum.

2. Treat q as continuous and use a numerical optimization routine.

3. Take the derivative of f(q), set it equal to zero, and solve for q.

In all cases, you are better off taking the log f(q) which is monotonic and
therefore will still provide the same maximum as f(q).
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Bayesian decision theory Choosing a hand

Visualizing the expected log utility

# p(theta) \propto N(theta;mu,sigma^2)I(1<= theta <= 400)

mu=160; sigma=60; U=400
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Bayesian decision theory Choosing a hand

Computational approaches

log_f = Vectorize(function(q, mu, sigma, U) {
if (q<0 | q>U) return(-Inf)

return(log(q) + dnorm(q, mu, sigma, log=TRUE))

})

# Evaluate all options

log_expected_utility = log_f(1:U, mu=mu, sigma=sigma, U=U)

which.max(log_expected_utility) # since we are using integers 1:U

[1] 180

# Numerical optimization

optimize(function(x) log_f(x, mu=mu, sigma=sigma, U=U), c(1,U), maximum=TRUE)

$maximum

[1] 180

$objective

[1] 0.1241182
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Bayesian decision theory Choosing a hand

Derivation

The function to maximize is

log f(q) = log(q)− (q − µ)2/2σ2.

The derivative is
d

dq
log f(q) =

1

q
− (q − µ)/σ2.

Setting this equal to zero and multiplying by −qσ2 results in

q2 − µq − σ2 = 0.

This is a quadratic with roots at

µ±
√
µ2 + 4σ2

2
.

Since q must be positive, the answer is

(mu+sqrt(mu^2+4*sigma^2))/2

[1] 180
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Bayesian decision theory Sequential decisions

Sequential decisions

Consider a sequence of posteriors distributions p(θt|y1:t) that describe your
uncertainty about the current state of the world θt given the data up to
the current time y1:t = (y1, . . . , yt). You also have a loss function for the
current time L(θt, δt). No suppose you are allowed to make a decision δt+1

at each time t and this decision can affect the future states of the world θs
for s > t.

At each time point, we have an optimal Bayes decision, i.e.

argminδt+1

∞∑
s=t+1

Eθs,δs|y1:t [L (θs, δs)| y1:t] .

But because your decision can affect future states which, in turn, can
affect future decisions, your current decision needs to integrate over future
decisions.

Jarad Niemi (STAT544@ISU) Decision theory March 7, 2017 13 / 13


	Bayesian decision theory
	Parameter estimation
	Choosing a hand
	Sequential decisions


