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e
Bayesian computation

Goals:
o Ey,lh( fh p(0]y)do
° p(y) = fp y|9 (0)d8 = Eq[p(y|0)]

Approaches:

@ Numerical integration
@ Stochastic (Monte Carlo) integration

Theoretical justification
Gridding

Inverse CDF
Accept-reject
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Bayesian computation Numerical integration - overview

Numerical integration

Numerical integration where

1 S
En0)|y] = / h(O)p(0ly)do ~ o > wih <9<s>> » <9<s>
S=1

o 0% are selected points,
@ wj is the weight given to the point 6(*), and

@ the error can be bounded.
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Bayesian computation Stochastic integration

Stochastic integration - overview

Monte Carlo (simulation) methods where

S
1
EWO)l) = [ mo)p(6ln)do ~ &> wih (0)
S=1
and

0 90 % g(0) (for some proposal distribution g),
o wy = p(6y)/g(6")),

@ and we have SLLN and CLT.
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Bayesian computation Numerical integration example

Example: Normal-Cauchy model
Let Y ~ N(0,1) with 8 ~ Ca(0,1). The posterior is

exp(—(y — 0)*/2)

p(Bly) o< p(y|0)p(0) o 1162

= q(0]y)

which is not a known distribution. We might be interested in

1. normalizing this posterior, i.e. calculating

) = [ atol)as
2. or in calculating the posterior mean, i.e.

E[oly] = /9p(9|y)d9 = /eqc((ey’y))de.
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Normal-Cauchy: marginal likelihood

y <1

q <- function(theta, y, log = FALSE) {
out <- - (y - theta)"2 / 2 - log(1l + theta"2)
if (log) return(out)
return(exp(out))

w = @1

theta <- seq(-5, 5, by = w) +y
(cy <- sum(q(theta,y) * w))

[1] 1.305608

integrate(function(x) q(x,y), -Inf, Inf)

1.305609 with absolute error < 0.00013
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bl el
Normal-Cauchy: distribution

N

0.44
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o

0.24
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b % 5 ; ; :
theta
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Bayesian computation Numerical integration example

Posterior expectation - Reimann Integration

Elh(O)]y] ~ iwsh (9(s>> » (e<s> e

) = Sf:lwsh (1) q(‘)EM

h <- function(theta) theta

sum(w * h(theta) * qg(theta,y) / cy)

[1] 0.5542021
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Bayesian computation Numerical integration example

Error in summarize(rowwise(data.frame(y = seq(from = -5, to = 5, by = 0.1)), : argument "by" is missing, with no default
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Bayesian computation Numerical integration example

Posterior expectation as a function of observed data

Error in eval(expr, envir, enclos): object ’res’ not found
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yesian computation Monte Carlo methods

Convergence review

Three main notions of convergence of a sequence of random variables X1, X2, ... and a random variable X:
@ Convergence in distribution (X, A X):
lim Fp(X) = F(x).
n— oo

@ Convergence in probability (WLLN, X, LS X):
lim P(|X, — X| >e€)=0.
n— oo

@ Almost sure convergence (SLLN, X, %% X):

;>< lim X, =<x) =1
n-— oo

Implications:
@ Almost sure convergence implies convergence in probability.

@ Convergence in probability implies convergence in distribution.

@ X, will be our approximation to an integral and X the true (constant) value of that integral or

@ X, will be a standardized approximation and X will be N (0, 1).
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Mente Carlo methods
Monte Carlo integration

Consider evaluating the integral

using the Monte Carlo estimate

where 0 ‘% p(6). We know
@ SLLN: hs 25 E[h(0)].
@ CLT: if h? has finite expectation, then
hs — E[h(0)]

Vvs/S

4 N(0,1)

where

Wl

5
.72
vs = Varlh(0)] ~ = 3 [ (6)) ~ hs]
s=1
or any other consistent estimator.
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Defiite integral
Definite integral

Suppose you are interested in evaluating

1
I:/ /249,
0

Then set
e h(f) = e/ and
e p(f) =1, ie. 6§~ Unif(0,1).
and approximate by a Monte Carlo estimate via
1. Fors=1,...,5,
a. sample 0(=) "% Unif(0,1) and
b. calculate h (6()).
2. Calculate

U

1 S
I~ =) h(0W).
s=1
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Bayesian computation Definite integral

Monte Carlo sampling randomly infills

Number of samples: 20

1.00

0.75+
0.50+
0.25+
0.00+

1.00+
0.75+
0.50+
0.25+
0.00+

f(8)

Number of samples: 200

T T T T T
0.00 0.25 0.50 0.75 1.00
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Bayesian computation Definite integral

Strong law of large numbers

Monte Carlo Estimate

0.90 1

o

[e¢]

byl
1

Estimate

0.84

0.81

T T T T
0 250 500 750 1000
Number of samples
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Bayesian computation Definite integral

Central limit theorem

Monte Carlo Central Limit Theorem Uncertainty

0.9

Estimate

0.8 1

0.7 -

o -

250 500 750 1000
Number of samples
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Bayesian computation Infinite bounds

Infinite bounds

Suppose 6 ~ N(0, 1) and you are interested in evaluating

_ [T g L e
E[0) = /_meﬁe do
Then set
e h(f) =6 and
e g(0)=¢(0),ie 0~ N(0,1).
and approximate by a Monte Carlo estimate via
1. Fors=1,...,5,
a. sample (%) i N(0,1) and
b. calculate h (0(*)).
2. Calculate

1 S
El0)] ~ 5 > h(OW).
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Bayesian computation Infinite bounds

Non-uniform sampling

Number of samples: 10
2 |
0-
2
@
= Number of samples: 100
2
0 |
_2 |
5 5 '

2
0
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Bayesian computation Infinite bounds

Monte Carlo estimate

Monte Carlo Central Limit Theorem Uncertainty

0.51

0.0

Estimate

-0.54

0 250 500 750 1000
Number of samples
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Bayesian computation Gridding

Monte Carlo approximation via gridding

Rather than determining ¢(y) and then E[f|y] via deterministic gridding (all w; are equal), we
can use the grid as a discrete approximation to the posterior, i.e.

q(6ily)
p(Oly) = E pidp, (0 pi= —
SN al85ly)

where dp,(0) is the Dirac delta function, i.e. dg,(0) =0V 6 # 6; J 66,(0)d0 = 1. This
discrete approximation to p(f|y) can be used to approximate the expectation E[h(6)|y]
deterministically or via simulation, i.e.

N S
Eh@)ly) ~ Y _pih(6)  Eh@O)ly] ~ ;Z n (69)

s) nd <N ) .
where 0(5) " SN pi6g,(0) (with replacement).
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yesian computation Gridding
Example: Normal-Cauchy model

y <1

theta = seq(-5,5,length=1e2+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)
[1] 0.5542021
mean (sample (theta,prob=p,replace=TRUE))

[1] 0.7049505

theta = seq(-5,5,length=1e6+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)
[1] 0.5542021
mean (sample (theta, le2,prob=p,replace=TRUE))

[1] 0.644987

post_expectation(1)

[1] 0.5542021

d Niemi (ST 40l
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Inverse cumulative distribution function

Definition

The cumulative distribution function (cdf) of a random variable X is defined by

Fx(z) = Px(X <) for all .

Lemma

Let X be a random variable whose cdf is F(x) and you have access to the inverse cdf of X,
ie. if
u=F(z) = x=FYu).

IfU ~ Unif(0,1), then X = F~Y(U) is a simulation from the distribution for X .
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Inverse CDF method
Inverse CDF

Standard normal cdf

1.001
0.751
S 0.504
0.251
0.00 vV \
-2 0 2
X
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Bayesian computation Inverse CDF method

Exponential example

For example, to sample X ~ Exp(1),
1. Sample U ~ Unif(0,1).
2. Set X = —log(l1 —U), or X = —log(U).

1.00+

0.754

density
o
@
o

0.254
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Bayesian computation Inverse CDF method

Sampling from a univariate truncated distribution

Suppose you wish to sample from X ~ N (u,0%)I(a < X < b), i.e. a normal random variable
with untruncated mean y and variance o2, but truncated to the interval (a,b). Suppose the
untruncated cdf is F' and inverse cdf is F'~1.

1. Calculate endpoints p, = F(a) and p, = F(b).
2. Sample U ~ Unif(pa,pp)-
3. Set X = F~L(U).

This just avoids having to recalculate the normalizing constant for the pdf, i.e.

1/(F=H(b) = F~}(a)).
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Truncated normal

N(5,9"2)I(1< X < 6)

1.004
0.75 1
S 0.50 1
0.251
0.00 1

T T T T T

-20 -10 0 10 20

X
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Bayesian computation Inverse CDF method

Truncated normal

X ~N(5,9HI(1 < X <6)

0.24

density

0.14

0.04
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el
Rejection sampling

Suppose you wish to obtain samples 6 ~ p(f|y), rejection sampling performs the following

1. Sample a proposal 0* ~ g(0) and U ~ Unif(0,1).

2. Accept 0 = 6* as a draw from p(0|y) if U < p(0*|y)/Mg(0*), otherwise return to step 1.
where M satisfies M g(60) > p(0|y) for all 6.

e For a given proposal distribution g(#), the optimal M is M = supg p(0]y)/g(0).
@ The probability of acceptance is 1/M.

The accept-reject idea is to create an envelope, M g(6), above p(6|y).
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Bayesian computation Rejection sampling

Rejection sampling with unnormalized density

Suppose you wish to obtain samples 6 ~ p(0|y) x q(0|y), rejection sampling performs the
following

1. Sample a proposal 8* ~ g(6) and U ~ Unif(0,1).

2. Accept 0 = 0 as a draw from p(0y) if U < q(0*|y)/MTg(6*), otherwise return to step 1.
where M satisfies M1 g(8) > q(6]y) for all 6.

e For a given proposal distribution g(#), the optimal M is MT = sup, q(8]y)/g(6).
@ The acceptance probability is 1/M = c(y)/M?.
The accept-reject idea is to create an envelope, M g(6), above ¢(8|y).
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Bayesian computation Rejection sampling

Example: Normal-Cauchy model

IfY ~ N(0,1) and 8 ~ Ca(0,1), then

~-0)2/2__1
for 8 € R.
Choose a N(y, 1) as a proposal distribution, i.e.
]. —(0— 2 2
g(0) = ——e~ (=07
V2T
with =022 1
—(y—
t s 10 _ € ) _ v2r
M2oTgo) =50 Leown —Pare -V

The acceptance rate is 1/M = c(y)/MT = 1.3056085/v/21 = 0.5208624.
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Bayesian computation Rejection sampling

Example: Normal-Cauchy model

1.004

0.754

accept

0.501 ® FALSE

uMg(e)

e TRUE

0.25 1

0.00

sample
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el
Heavy-tailed proposals

Suppose our target is a standard Cauchy and our (proposed) proposal is a standard normal,
then

1
p(0ly) w(1+07)

g(e) - \/%6792/2

and
1

m(1+62) 6H—c0
T 22
vV 27re

since e~ converges to zero faster than 1/(1 + a). Thus, there is no value M such that
M g(0) > p(0|y) for all 6.

TL;DR the condition M g(0) > p(f|y) requires the proposal to have tails at least as thick
(heavy) as the target.
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