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Bayesian computation Goals

Bayesian computation

Goals:

Eθ|y[h(θ)|y] =
∫
h(θ)p(θ|y)dθ

p(y) =
∫
p(y|θ)p(θ)dθ = Eθ[p(y|θ)]

Approaches:

Numerical integration

Stochastic (Monte Carlo) integration

Theoretical justification
Gridding
Inverse CDF
Accept-reject
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Bayesian computation Numerical integration - overview

Numerical integration

Numerical integration where

E[h(θ)|y] =
∫

h(θ)p(θ|y)dθ ≈ 1

S

S∑
S=1

wsh
(
θ(s)

)
p
(
θ(s)

∣∣∣ y)

θ(s) are selected points,

ws is the weight given to the point θ(s), and

the error can be bounded.
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Bayesian computation Stochastic integration

Stochastic integration - overview

Monte Carlo (simulation) methods where

E[h(θ)|y] =
∫

h(θ)p(θ|y)dθ ≈ 1

S

S∑
S=1

wsh
(
θ(s)

)
and

θ(s)
ind∼ g(θ) (for some proposal distribution g),

ws = p(θ(s)|y)/g(θ(s)),
and we have SLLN and CLT.
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Bayesian computation Numerical integration example

Example: Normal-Cauchy model

Let Y ∼ N(θ, 1) with θ ∼ Ca(0, 1). The posterior is

p(θ|y) ∝ p(y|θ)p(θ) ∝ exp(−(y − θ)2/2)

1 + θ2
= q(θ|y)

which is not a known distribution. We might be interested in

1. normalizing this posterior, i.e. calculating

c(y) =

∫
q(θ|y)dθ

2. or in calculating the posterior mean, i.e.

E[θ|y] =
∫

θp(θ|y)dθ =

∫
θ
q(θ|y)
c(y)

dθ.
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Bayesian computation Numerical integration example

Normal-Cauchy: marginal likelihood

y <- 1 # Data

q <- function(theta, y, log = FALSE) {
out <- - (y - theta)^2 / 2 - log(1 + theta^2)

if (log) return(out)

return(exp(out))

}

# Find normalizing constant for q(theta|y)

w <- 0.1 # grid width

theta <- seq(-5, 5, by = w) + y

(cy <- sum(q(theta,y) * w)) # grid-based estimate

[1] 1.305608

integrate(function(x) q(x,y), -Inf, Inf) # numerical integration

1.305609 with absolute error < 0.00013
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Bayesian computation Numerical integration example

Normal-Cauchy: distribution
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Bayesian computation Numerical integration example

Posterior expectation - Reimann Integration

E[h(θ)|y] ≈
S∑

s=1

wsh
(
θ(s)

)
p
(
θ(s)

∣∣∣ y) =

S∑
s=1

wsh
(
θ(s)

) q
(
θ(s)

∣∣ y)
c(y)

h <- function(theta) theta # expectation

sum(w * h(theta) * q(theta,y) / cy)

[1] 0.5542021
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Bayesian computation Numerical integration example

Error in summarize(rowwise(data.frame(y = seq(from = -5, to = 5, by = 0.1)), : argument "by" is missing, with no default
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Bayesian computation Numerical integration example

Posterior expectation as a function of observed data

Error in eval(expr, envir, enclos): object ’res’ not found
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Bayesian computation Monte Carlo methods

Convergence review

Three main notions of convergence of a sequence of random variables X1, X2, . . . and a random variable X:

Convergence in distribution (Xn
d→ X):

lim
n→∞

Fn(X) = F (x).

Convergence in probability (WLLN, Xn
p→ X):

lim
n→∞

P (|Xn − X| ≥ ϵ) = 0.

Almost sure convergence (SLLN, Xn
a.s.−→ X):

P

(
lim

n→∞
Xn = X

)
= 1.

Implications:

Almost sure convergence implies convergence in probability.

Convergence in probability implies convergence in distribution.

Here,

Xn will be our approximation to an integral and X the true (constant) value of that integral or

Xn will be a standardized approximation and X will be N(0, 1).
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Bayesian computation Monte Carlo methods

Monte Carlo integration

Consider evaluating the integral

E[h(θ)] =

∫
Θ

h(θ)p(θ)dθ

using the Monte Carlo estimate

ĥS =
1

S

S∑
s=1

h
(
θ(s)

)
where θ(s)

ind∼ p(θ). We know

SLLN: ĥS
a.s.−→ E[h(θ)].

CLT: if h2 has finite expectation, then

ĥS − E[h(θ)]√
vS/S

d→ N(0, 1)

where

vS = V ar[h(θ)] ≈ 1

S

S∑
s=1

[
h
(
θ(s)

)
− ĥS

]2
or any other consistent estimator.
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Bayesian computation Definite integral

Definite integral

Suppose you are interested in evaluating

I =

∫ 1

0
e−θ2/2dθ.

Then set

h(θ) = e−θ2/2 and

p(θ) = 1, i.e. θ ∼ Unif(0, 1).

and approximate by a Monte Carlo estimate via
1. For s = 1, . . . , S,

a. sample θ(s)
ind∼ Unif(0, 1) and

b. calculate h
(
θ(s)

)
.

2. Calculate

I ≈ 1

S

S∑
s=1

h(θ(s)).
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Bayesian computation Definite integral

Monte Carlo sampling randomly infills

Number of samples: 200

Number of samples: 20
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Bayesian computation Definite integral

Strong law of large numbers
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Bayesian computation Definite integral

Central limit theorem
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Bayesian computation Infinite bounds

Infinite bounds

Suppose θ ∼ N(0, 1) and you are interested in evaluating

E[θ] =

∫ ∞

−∞
θ

1√
2π

e−θ2/2dθ

Then set

h(θ) = θ and
g(θ) = ϕ(θ), i.e. θ ∼ N(0, 1).

and approximate by a Monte Carlo estimate via
1. For s = 1, . . . , S,

a. sample θ(s)
ind∼ N(0, 1) and

b. calculate h
(
θ(s)

)
.

2. Calculate

E[θ] ≈ 1

S

S∑
s=1

h(θ(s)).
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Bayesian computation Infinite bounds

Non-uniform sampling

Number of samples: 100

Number of samples: 10
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Bayesian computation Infinite bounds

Monte Carlo estimate
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Bayesian computation Gridding

Monte Carlo approximation via gridding

Rather than determining c(y) and then E[θ|y] via deterministic gridding (all wi are equal), we
can use the grid as a discrete approximation to the posterior, i.e.

p(θ|y) ≈
N∑
i=1

piδθi(θ) pi =
q(θi|y)∑N
s=1 q(θj |y)

where δθi(θ) is the Dirac delta function, i.e. δθi(θ) = 0∀ θ ̸= θi
∫
δθi(θ)dθ = 1. This

discrete approximation to p(θ|y) can be used to approximate the expectation E[h(θ)|y]
deterministically or via simulation, i.e.

E[h(θ)|y] ≈
N∑
i=1

pih(θi) E[h(θ)|y] ≈ 1

S

S∑
s=1

h
(
θ(s)

)

where θ(s)
ind∼

∑N
i=1 piδθi(θ) (with replacement).
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Bayesian computation Gridding

Example: Normal-Cauchy model

y <- 1 # Data

# Small number of grid locations

theta = seq(-5,5,length=1e2+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)

[1] 0.5542021

mean(sample(theta,prob=p,replace=TRUE))

[1] 0.7049505

# Large number of grid locations

theta = seq(-5,5,length=1e6+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)

[1] 0.5542021

mean(sample(theta,1e2,prob=p,replace=TRUE)) # But small MC sample

[1] 0.644987

# Truth

post_expectation(1)

[1] 0.5542021
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Bayesian computation Inverse CDF method

Inverse cumulative distribution function

Definition

The cumulative distribution function (cdf) of a random variable X is defined by

FX(x) = PX(X ≤ x) for all x.

Lemma

Let X be a random variable whose cdf is F (x) and you have access to the inverse cdf of X,
i.e. if

u = F (x) =⇒ x = F−1(u).

If U ∼ Unif(0, 1), then X = F−1(U) is a simulation from the distribution for X.
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Bayesian computation Inverse CDF method

Inverse CDF
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Bayesian computation Inverse CDF method

Exponential example

For example, to sample X ∼ Exp(1),

1. Sample U ∼ Unif(0, 1).

2. Set X = − log(1− U), or X = − log(U).
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Bayesian computation Inverse CDF method

Sampling from a univariate truncated distribution

Suppose you wish to sample from X ∼ N(µ, σ2)I(a < X < b), i.e. a normal random variable
with untruncated mean µ and variance σ2, but truncated to the interval (a, b). Suppose the
untruncated cdf is F and inverse cdf is F−1.

1. Calculate endpoints pa = F (a) and pb = F (b).

2. Sample U ∼ Unif(pa, pb).

3. Set X = F−1(U).

This just avoids having to recalculate the normalizing constant for the pdf, i.e.
1/(F−1(b)− F−1(a)).
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Bayesian computation Inverse CDF method

Truncated normal
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Bayesian computation Inverse CDF method

Truncated normal

X ∼ N(5, 92)I(1 ≤ X ≤ 6)

0.0

0.1

0.2

2 4 6
x

de
ns

ity

Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 21, 2024 26 / 31



Bayesian computation Rejection sampling

Rejection sampling

Suppose you wish to obtain samples θ ∼ p(θ|y), rejection sampling performs the following

1. Sample a proposal θ∗ ∼ g(θ) and U ∼ Unif(0, 1).

2. Accept θ = θ∗ as a draw from p(θ|y) if U ≤ p(θ∗|y)/Mg(θ∗), otherwise return to step 1.

where M satisfies M g(θ) ≥ p(θ|y) for all θ.

For a given proposal distribution g(θ), the optimal M is M = supθ p(θ|y)/g(θ).
The probability of acceptance is 1/M .

The accept-reject idea is to create an envelope, M g(θ), above p(θ|y).
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Bayesian computation Rejection sampling

Rejection sampling with unnormalized density

Suppose you wish to obtain samples θ ∼ p(θ|y) ∝ q(θ|y), rejection sampling performs the
following

1. Sample a proposal θ∗ ∼ g(θ) and U ∼ Unif(0, 1).

2. Accept θ = θ∗ as a draw from p(θ|y) if U ≤ q(θ∗|y)/M †g(θ∗), otherwise return to step 1.

where M † satisfies M † g(θ) ≥ q(θ|y) for all θ.

For a given proposal distribution g(θ), the optimal M † is M † = supθ q(θ|y)/g(θ).
The acceptance probability is 1/M = c(y)/M †.

The accept-reject idea is to create an envelope, M † g(θ), above q(θ|y).
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Bayesian computation Rejection sampling

Example: Normal-Cauchy model

If Y ∼ N(θ, 1) and θ ∼ Ca(0, 1), then

p(θ|y) ∝ e−(y−θ)2/2 1

(1 + θ2)

for θ ∈ R.

Choose a N(y, 1) as a proposal distribution, i.e.

g(θ) =
1√
2π

e−(θ−y)2/2

with

M † ≥ sup
θ

q(θ|y)
g(θ)

= sup
θ

e−(y−θ)2/2 1
(1+θ2)

1√
2π
e−(θ−y)2/2

= sup
θ

√
2π

(1 + θ2)
=

√
2π

The acceptance rate is 1/M = c(y)/M † = 1.3056085/
√
2π = 0.5208624.
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Bayesian computation Rejection sampling

Example: Normal-Cauchy model
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Observed acceptance rate was 0.56
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Bayesian computation Rejection sampling

Heavy-tailed proposals

Suppose our target is a standard Cauchy and our (proposed) proposal is a standard normal,
then

p(θ|y)
g(θ)

=

1
π(1+θ2)

1√
2π
e−θ2/2

and
1

π(1+θ2)

1√
2π
e−θ2/2

θ→∞−→ ∞

since e−a converges to zero faster than 1/(1 + a). Thus, there is no value M such that
M g(θ) ≥ p(θ|y) for all θ.

TL;DR the condition M g(θ) ≥ p(θ|y) requires the proposal to have tails at least as thick
(heavy) as the target.
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