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Adaptive rejection sampling

Adaptive rejection sampling

Definition

A function is concave if

f((1− t)x+ t y) ≥ (1− t)f(x) + t f(y)

for any 0 ≤ t ≤ 1.
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Adaptive rejection sampling

Log-concavity

Definition

A function f(x) is log-concave if log f(x) is concave.

Lemma

A function is log-concave if and only if (log f(x))′′ ≤ 0 ∀x.

For example, X ∼ N(0, 1) has log-concave density since
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Adaptive rejection sampling

Adaptive rejection sampling

Adaptive rejection sampling can be used for distributions with log-concave densities. It builds
a piecewise linear envelope to the log density by evaluating the log function and its derivative
at a set of locations and constructing tangent lines, e.g.
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Adaptive rejection sampling

Adaptive rejection sampling

Pseudo-algorithm for adaptive rejection sampling:

1. Choose starting locations θ, call the set Θ

2. Construct piece-wise linear envelope log g(θ) to the log-density

a. Calculate log q(θ|y) and (log q(θ|y))′.
b. Find line intersections

3. Sample a proposed value θ∗ from the envelope g(θ)

a. Sample an interval
b. Sample a truncated (and possibly negative of an) exponential r.v.

4. Perform rejection sampling

a. Sample u ∼ Unif(0, 1)
b. Accept if u ≤ q(θ∗|y)/g(θ∗).

5. If rejected, add θ∗ to Θ and return to 2.
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Adaptive rejection sampling

Updating the envelope

As values are proposed and rejected, the envelope gets updated:
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Adaptive rejection sampling

Adaptive rejection sampling in R

library(ars)

x = ars(n=1000, function(x) -x^2/2, function(x) -x)

hist(x, prob=T, 100)

curve(dnorm, type='l', add=T)

Histogram of x
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Adaptive rejection sampling

Adaptive rejection sampling summary

Can be used with log-concave densities

Makes rejection sampling efficient by updating the envelope

There is a vast literature on adaptive rejection sampling. To improve upon the basic idea
presented here you can

include a lower bound

avoid calculating derivatives

incorporate a Metropolis step to deal with non-log-concave densities
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Adaptive rejection sampling Importance sampling

Importance sampling

Notice that

E[h(θ)|y] =
∫

h(θ)p(θ|y)dθ =

∫
h(θ)

p(θ|y)
g(θ)

g(θ)dθ

where g(θ) is a proposal distribution, so that we approximate the expectation via

E[h(θ)|y] ≈ 1

S
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w
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w
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g(θ(s))

is known as the importance weight.
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Adaptive rejection sampling Importance sampling

Importance sampling

If the target distribution is known only up to a proportionality constant, then

E[h(θ)|y] =
∫
h(θ)q(θ|y)dθ∫
q(θ|y)dθ

=

∫
h(θ) q(θ|y)g(θ) g(θ)dθ∫ q(θ|y)

g(θ) g(θ)dθ

where g(θ) is a proposal distribution, so that we approximate the expectation via

E[h(θ)|y] ≈
1
S

∑S
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is the normalized importance weight.
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Adaptive rejection sampling Importance sampling

Example: Normal-Cauchy model

If Y ∼ N(θ, 1) and θ ∼ Ca(0, 1), then

p(θ|y) ∝ e−(y−θ)2/2 1

(1 + θ2)

for all θ.

If we choose a N(y, 1) proposal, we have

g(θ) =
1√
2π

e−(θ−y)2/2

with

w(θ) =
q(θ|y)
g(θ)

=

√
2π

(1 + θ2)
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Adaptive rejection sampling Importance sampling

Normalized importance weights
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Adaptive rejection sampling Importance sampling

library(weights)

theta <- d$theta; weight <- d$weight

sum(weight*theta/sum(weight)) # Estimate mean

[1] 0.5504221

wtd.hist(theta, 100, prob=TRUE, weight=weight)

curve(q(x,y)/py(y), add=TRUE, col="red", lwd=2)

Histogram of theta

theta

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
3

0.
6

Jarad Niemi (STAT544@ISU) Introduction to Bayesian computation (cont.) March 21, 2024 14 / 23



Adaptive rejection sampling Importance sampling

Resampling

If an unweighted sample is desired, sample θ(s) with replacement with probability equal to the
normalized weights, w̃

(
θ(s)

)
.

# resampling

new_theta <- sample(theta, replace=TRUE, prob = weight) # internally normalized

hist(new_theta, 100, prob = TRUE, main = "Unweighted histogram of resampled draws"); curve(q(x,y)/py(y), add = TRUE, col="red", lwd=2)

Unweighted histogram of resampled draws
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Adaptive rejection sampling Importance sampling

Heavy-tailed proposals

Although any proposal can be used for importance sampling, proposals with tails as heavy as
the target will be efficient and have a CLT.

For example, suppose our target is a standard Cauchy and our proposal is a standard normal,
the weights are

w
(
θ(s)

)
=

p
(
θ(s)

∣∣ y)
g(θ(s))

=

1
π(1+θ2)

1√
2π
e−θ2/2

For θ(s)
iid∼ N(0, 1), the weights for the largest |θ(s)| will dominate the others.
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Adaptive rejection sampling Importance sampling

Importance weights for proposal with thin tails
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Adaptive rejection sampling Importance sampling

Effective sample size

We can get a measure of how efficient the sample is by computing the effective sample size
(ESS), i.e. how many independent unweighted draws do we effectively have:

ESS =
1∑S

s=1(w̃
(
θ(s)

)
)2

weight <- d$unweight # Unnormalized weight

(n <- length(d$weight)) # Number of samples

[1] 1000

(ess <- 1/sum(d$weight^2)) # Effective sample size

[1] 371.432

ess/n # Effective sample proportion

[1] 0.371432
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Adaptive rejection sampling Importance sampling

Effective sample size

set.seed(5)

theta <- rnorm(1e4)

lweight <- dcauchy(theta,log=TRUE) - dnorm(theta,log=TRUE)

cumulative_ess <- length(lweight)

for (i in 1:length(lweight)) {
lw = lweight[1:i]

w = exp(lw-max(lw))

w = w/sum(w)

cumulative_ess[i] = 1/sum(w^2)

}
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Adaptive rejection sampling Importance sampling

ESS - Light tail proposal
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Practical Monte Carlo

Practical Monte Carlo

As a practical matter, we typically obtain a single collection of samples, say θ(s) for
s = 1, . . . , S and we want to address many scientific questions.

For example,

E[θ|y]
Equal-tail 95% CI for θ

other functions of θ

So how large should S be? Large enough so the Monte Carlo error on the worst estimated
quantity is sufficiently small.
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Practical Monte Carlo

Practical Monte Carlo - Monte Carlo error

Calculate the Monte Carlo error.

# Normal distribution

theta <- rnorm(1e3)

mcmcse::mcse(theta) # expectation

$est

[1] -0.02732462

$se

[1] 0.03144569

mcmcse::mcse.q(theta, .025) # quantile

$est

[1] -1.877009

$se

[1] 0.06260711

$nsim

[1] 1000

# mcmcse::mcse.q(theta, .975)
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Practical Monte Carlo

Monte Carlo Error as a Function of Sample Size
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