Introduction to Bayesian computation (cont.)

Dr. Jarad Niemi

STAT 544 - Iowa State University

March 21, 2024

Outline

Bayesian computation

- Adaptive rejection sampling
- Importance sampling

Adaptive rejection sampling

Definition

A function is concave if

$$f((1-t)x + ty) \ge (1-t)f(x) + tf(y)$$

for any $0 \le t \le 1$.

Log-concavity

Definition

A function f(x) is log-concave if $\log f(x)$ is concave.

Lemma

A function is log-concave if and only if $(\log f(x))'' \le 0 \forall x$.

For example, $X \sim N(0,1)$ has log-concave density since

$$\frac{d^2}{dx^2}\log e^{-x^2/2} = \frac{d^2}{dx^2}\frac{-x^2}{2} = \frac{d}{dx} - x = -1.$$

Adaptive rejection sampling

Adaptive rejection sampling can be used for distributions with log-concave densities. It builds a piecewise linear envelope to the log density by evaluating the log function and its derivative at a set of locations and constructing tangent lines, e.g.

Adaptive rejection sampling

Pseudo-algorithm for adaptive rejection sampling:

- 1. Choose starting locations $\theta,$ call the set Θ
- 2. Construct piece-wise linear envelope $\log g(\theta)$ to the log-density
 - a. Calculate $\log q(\theta|y)$ and $(\log q(\theta|y))'$.
 - b. Find line intersections
- 3. Sample a proposed value θ^* from the envelope $g(\theta)$
 - a. Sample an interval
 - b. Sample a truncated (and possibly negative of an) exponential r.v.
- 4. Perform rejection sampling
 - a. Sample $u \sim Unif(0,1)$
 - b. Accept if $u \leq q(\theta^*|y)/g(\theta^*)$.
- 5. If rejected, add θ^* to Θ and return to 2.

Updating the envelope

As values are proposed and rejected, the envelope gets updated:

Adaptive rejection sampling in R

library(ars) x = ars(n=1000, function(x) -x^2/2, function(x) -x) hist(x, prob=T, 100) curve(dnorm, type='1', add=T)

Adaptive rejection sampling summary

- Can be used with log-concave densities
- Makes rejection sampling efficient by updating the envelope

There is a vast literature on adaptive rejection sampling. To improve upon the basic idea presented here you can

- include a lower bound
- avoid calculating derivatives
- incorporate a Metropolis step to deal with non-log-concave densities

Importance sampling

Notice that

$$E[h(\theta)|y] = \int h(\theta)p(\theta|y)d\theta = \int h(\theta)\frac{p(\theta|y)}{g(\theta)}g(\theta)d\theta$$

where $g(\theta)$ is a proposal distribution, so that we approximate the expectation via

$$E[h(\theta)|y] \approx \frac{1}{S} \sum_{s=1}^{S} w\left(\theta^{(s)}\right) h\left(\theta^{(s)}\right)$$

where $\theta^{(s)} \stackrel{iid}{\sim} g(\theta)$ and

$$w\left(\theta^{(s)}\right) = \frac{p\left(\left.\theta^{(s)}\right|y\right)}{g(\theta^{(s)})}$$

is known as the importance weight.

March 21, 2024

Importance sampling

If the target distribution is known only up to a proportionality constant, then

$$E[h(\theta)|y] = \frac{\int h(\theta)q(\theta|y)d\theta}{\int q(\theta|y)d\theta} = \frac{\int h(\theta)\frac{q(\theta|y)}{g(\theta)}g(\theta)d\theta}{\int \frac{q(\theta|y)}{g(\theta)}g(\theta)d\theta}$$

where $g(\theta)$ is a proposal distribution, so that we approximate the expectation via

$$E[h(\theta)|y] \approx \frac{\frac{1}{S} \sum_{s=1}^{S} w\left(\theta^{(s)}\right) h\left(\theta^{(s)}\right)}{\frac{1}{S} \sum_{s=1}^{S} w\left(\theta^{(s)}\right)} = \sum_{s=1}^{S} \tilde{w}\left(\theta^{(s)}\right) h\left(\theta^{(s)}\right)$$

where $\theta^{(s)} \stackrel{iid}{\sim} g(\theta)$ and

$$\tilde{w}\left(\theta^{(s)}\right) = \frac{w\left(\theta^{(s)}\right)}{\sum_{j=1}^{S} w\left(\theta^{(j)}\right)}$$

is the normalized importance weight.

Jarad Niemi (STAT544@ISU)

March 21, 2024

Example: Normal-Cauchy model

If $Y \sim N(\theta,1)$ and $\theta \sim Ca(0,1),$ then

$$p(\theta|y) \propto e^{-(y-\theta)^2/2} \frac{1}{(1+\theta^2)}$$

for all θ .

If we choose a N(y,1) proposal, we have

$$g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(\theta - y)^2/2}$$

with

$$w(\theta) = \frac{q(\theta|y)}{g(\theta)} = \frac{\sqrt{2\pi}}{(1+\theta^2)}$$

Normalized importance weights

library(weights)
theta <- d\$weight <- d\$weight
sum(weight*theta/sum(weight)) # Estimate mean</pre>

[1] 0.5504221

wtd.hist(theta, 100, prob=TRUE, weight=weight)
curve(q(x,y)/py(y), add=TRUE, col="red", lwd=2)

Resampling

If an unweighted sample is desired, sample $\theta^{(s)}$ with replacement with probability equal to the normalized weights, $\tilde{w}(\theta^{(s)})$.

Unweighted histogram of resampled draws

Heavy-tailed proposals

Although any proposal can be used for importance sampling, proposals with tails as heavy as the target will be efficient and have a CLT.

For example, suppose our target is a standard Cauchy and our proposal is a standard normal, the weights are

$$w\left(\theta^{(s)}\right) = \frac{p\left(\left.\theta^{(s)}\right|y\right)}{g(\theta^{(s)})} = \frac{\frac{1}{\pi(1+\theta^2)}}{\frac{1}{\sqrt{2\pi}}e^{-\theta^2/2}}$$

For $\theta^{(s)} \stackrel{iid}{\sim} N(0,1)$, the weights for the largest $|\theta^{(s)}|$ will dominate the others.

Importance weights for proposal with thin tails

Effective sample size

We can get a measure of how efficient the sample is by computing the effective sample size (ESS), i.e. how many independent unweighted draws do we effectively have:

$$ESS = \frac{1}{\sum_{s=1}^{S} (\tilde{w}\left(\theta^{(s)}\right))^2}$$

<pre>weight <- d\$unweight (n <- length(d\$weight))</pre>	# Unnormalized weight # Number of samples
[1] 1000	
(ess <- 1/sum(d\$weight^2))	# Effective sample size
[1] 371.432	
ess/n	# Effective sample proport
[1] 0.371432	

Effective sample size

```
set.seed(5)
theta <- rnorm(1e4)
lweight <- dcauchy(theta,log=TRUE) - dnorm(theta,log=TRUE)
cumulative_ess <- length(lweight)
for (i in 1:length(lweight)) {
    lw = lweight[1:i]
    w = exp(lw=max(lw))
    w = w/sum(w)
    cumulative_ess[i] = 1/sum(w^2)
}</pre>
```

ESS - Light tail proposal

Practical Monte Carlo

As a practical matter, we typically obtain a single collection of samples, say $\theta^{(s)}$ for $s = 1, \ldots, S$ and we want to address many scientific questions.

For example,

- $E[\theta|y]$
- Equal-tail 95% CI for θ
- other functions of $\boldsymbol{\theta}$

So how large should S be? Large enough so the Monte Carlo error on the worst estimated quantity is sufficiently small.

Practical Monte Carlo - Monte Carlo error

Calculate the Monte Carlo error.

```
# Normal distribution
theta <- rnorm(1e3)
mcmcse::mcse(theta)
                             # expectation
$est
[1] -0.02732462
$se
[1] 0.03144569
mcmcse::mcse.g(theta, .025) # guantile
$est
[1] -1.877009
$se
[1] 0.06260711
$nsim
[1] 1000
# mcmcse::mcse.q(theta, .975)
```

Monte Carlo Error as a Function of Sample Size

