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Markov chains

Markov chains

Definition

A discrete-time, time-homogeneous Markov chain is a sequence of random
variables θ(t) such that

p
(
θ(t)

∣∣∣θ(t−1), . . . , θ(0)
)
= p

(
θ(t)

∣∣∣θ(t−1)
)

which is known as the transition distribution.

Definition

The state space is the support of the Markov chain.

Definition

The transition distribution of a Markov chain whose state space is finite
can be represented with a transition matrix P with elements Pij

representing the probability of moving from state i to state j in one
time-step.

Jarad Niemi (STAT544@ISU) Markov chains April 9, 2024 3 / 27



Markov chains Correlated coin flip

Correlated coin flip

Let

P =

( 0 1

0 1− p p
1 q 1− q

)
where

the state space is {0, 1},
p is the probability of switching from 0 to 1, and

q is the probability of switching from 1 to 0.
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Markov chains Correlated coin flip

Correlated coin flip

p=0.2, q=0.4

Warning: ‘qplot()‘ was deprecated in ggplot2 3.4.0.

This warning is displayed once every 8 hours.

Call ‘lifecycle::last lifecycle warnings()‘ to see where this warning was generated.
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Markov chains DNA sequence

DNA sequence

P =


A C G T

A 0.60 0.10 0.10 0.20
C 0.10 0.50 0.30 0.10
G 0.05 0.20 0.70 0.05
T 0.40 0.05 0.05 0.50


with

state space {A,C,G,T} and

each cell provides the probability of moving from the row nucleotide
to the column nucleotide.

http://tata-box-blog.blogspot.com/2012/04/introduction-to-markov-chains-and.html
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Markov chains DNA sequence

DNA sequence

[1] A A A A A A A T C C G T A A T C A A A A A A C G G G G C C C C G G G G G G G G G T T T T T T T G C A A T T T T T T

[58] G G G G C G G G C G G G G G G G G G G G C C G C C C C C C C C C C A A A T T T T G G G G
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Markov chains Random walk on the integers

Random walk on the integers

Let

Pij =

{
1/3 j ∈ {i− 1, i, i+ 1}
0 otherwise

where

the state space is the integers, i.e. {. . . ,−1, 0, 1, . . .} and

the transition matrix P is infinite-dimensional.
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Markov chains Random walk on the integers

Random walk on the integers
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Markov chain theory

Stationary distribution

Let π(t) denote a row vector with

π
(t)
i = Pr

(
θ(t) = i

)
.

Then
π(t) = π(t−1)P.

Thus, π(0) and P completely characterize π(t) = π(0)P t where P t = P t−1P for t > 1
and P 1 = P .

Definition

A stationary distribution is a distribution π such that

π = πP.

This is also called the invariant or equilibrium distribution.

Given a transition matrix P ,

Does a π exist? Is π unique?

If π is unique, does limt→∞ π(t) = π for all π(0)? In this case, π is often called the
limiting distribution.
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Markov chain theory

Stationary distribution exists, but is not unique

Let

P =

( 0 1

0 1 0
1 0 1

)
then

π = πP

for any π.

This Markov chain stays where it is.
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Markov chain theory Irreducibility

Irreducibility

Definition

A Markov chain is irreducible if for all i and j

Pr
(
θtij = j

∣∣∣θ(0) = i
)
> 0

for some tij ≥ 0. Otherwise the chain is reducible.

Theorem

A finite state space, irreducible Markov chain has a unique stationary
distribution π.

Reducible example:

P =


0 1 2 3

0 0.5 0.5 0 0
1 0.5 0.5 0 0
2 0 0 0.5 0.5
3 0 0 0.5 0.5


Jarad Niemi (STAT544@ISU) Markov chains April 9, 2024 12 / 27



Markov chain theory Irreducibility

Stationary distribution is unique, but is not the limiting
distribution.

Let

P =

( 0 1

0 0 1
1 1 0

)
then π =

(
1
2

1
2

)
since π = πP , but

lim
t→∞

π(t) ̸= π ∀π(0)

since

π(t) =

{
π(0) t even

1− π(0) t odd

This Markov chain jumps back and forth.
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Markov chain theory Aperiodic

Aperiodic

Definition

The period ki of a state i is

ki = gcd{t : Pr
(
θ(t) = i|θ(0) = i

)
> 0}

where gcd is the greatest common divisor. If ki = 1, then state i is said to be
aperiodic, i.e.

Pr
(
θ(t) = i|θ(0) = i

)
> 0

for t > t0 for some t0. A Markov chain is aperiodic if every state is aperiodic.

Periodic example:

P =


0 1 2 3

0 0 1 0 0
1 0 0 1 0
2 0 0 0 1
3 1 0 0 0


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Markov chain theory Aperiodic

Example

Let

P =

( 0 1

0 0 1
1 1

2
1
2

)
Note that

Pr
(
θ(1) = 0|θ(0) = 0

)
= 0

Pr
(
θ(2) = 0|θ(0) = 0

)
= 1

2

Pr
(
θ(3) = 0|θ(0) = 0

)
= 1

2
1
2 = 1

4

Pr
(
θ(4) = 0|θ(0) = 0

)
= 1

2
1
2 + 1

2
1
2
1
2 = 3

8
...

generally Pr
(
θ(t) = 0|θ(0) = 0

)
> 0 for all t > 1. The period k of state 0

is
gcd{t : Pr

(
θ(t) = i|θ(0) = i

)
> 0} = gcd{2, 3, 4, 5, . . .} = 1

Thus state 0 is aperiodic. State 1 is trivially aperiodic since
P (θ(1) = 1|θ(0) = 1) = 1/2 > 0. Thus the Markov chain is aperiodic.

Jarad Niemi (STAT544@ISU) Markov chains April 9, 2024 15 / 27



Markov chain theory Finite support convergence

Finite support convergence

Lemma

Every state in an irreducible Markov chain has the same period. Thus, in
an irreducible Markov chain, if one state is aperiodic, then the Markov
chain is aperiodic.

Theorem

A finite state space, irreducible Markov chain has a unique stationary
distribution π. If the chain is aperiodic, then limt→∞ π(t) = π for all π(0).
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Markov chain theory Finite support convergence

Correlated coin flips

For

P =

( 0 1

0 1− p p
1 q 1− q

)
is irreducible and aperiodic if 0 < p, q < 1, thus the Markov chain with transition
matrix P has a unique stationary distribution and the chain converges to this
distribution.
Since π = πP and π0 + π1 = 1, we have

π0 = π0(1− p) + π1q =⇒
p
q = π1

π0
= π1

1−π1
=⇒

π1 = p
p+q =⇒

π0 = q
p+q

So, the stationary distribution for P is π = (q, p)/(p+ q).
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Markov chain theory Finite support convergence

Calculate numerically

For finite state space and P t = P t−1P , we have

lim
t→∞

π(t) = lim
t→∞

π(0)P t = π(0) lim
t→∞

P t = π(0)

 π
...
π

 = π

p = 0.2; q = 0.4

create_P = function(p,q) matrix(c(1-p,p,q,1-q), 2, byrow=TRUE)

P = Pt = create_P(p,q)

for (i in 1:100) Pt = Pt%*%P

Pt

[,1] [,2]

[1,] 0.6666667 0.3333333

[2,] 0.6666667 0.3333333

c(q,p)/(p+q)

[1] 0.6666667 0.3333333
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Markov chain theory Finite support convergence

Random walk on the integers

Let

Pij =

{
1/3 j ∈ {i− 1, i, i+ 1}
0 otherwise

.

Then, this Markov chain is

irreducible

Pr
(
θ(|j−i|) = j|θ(0) = i

)
= 3−|j−i| > 0,

and aperiodic

Pr
(
θ(t) = i|θ(t−1) = i

)
= 1/3 > 0,

but the Markov chain does not have a stationary distribution.

The Markov chain can wander off forever.
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Markov chain theory Finite support convergence

A stationary distribution must satisfy π = πP with

P =



.

.

.
0 1/3 1/3 1/3 0 0 0

· · · 0 0 1/3 1/3 1/3 0 0 · · ·
0 0 0 1/3 1/3 1/3 0

.

.

.


or, more succinctly,

πi =
1

3
πi−1 +

1

3
πi +

1

3
πi+1.

Thus we must solve for {πi} that satisfy

2πi = πi−1 + πi+1 ∀ i∑∞
i=−∞ πi = 1

πi ≥ 0 ∀ i

Note that
π2 = 2π1 − π0
π3 = 2π2 − π1 = 3π1 − 2π0

.

.

.
πi = iπ1 − (i − 1)π0

Thus
if π1 = π0 > 0, then πi = π1, ∀ i ≥ 2 and

∑∞
i=0 πi > 1

if π1 > π0, then πi → ∞
if π1 < π0, then πi → −∞

if π1 = π0 = 0, then πi = 0 ∀ i ≥ 0

But we also have πi = 2πi+1 − πi+2 so that

if π1 = π0 = 0, then πi = 0 ∀ i ≤ 0

Thus a stationary distribution does not exist.
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Markov chain theory Recurrence

Recurrence

Definition

Let Ti be the first return time to state i, i.e.

Ti = inf{t ≥ 1 : θ(t) = i|θ(0) = i}

A state is recurrent if Pr (Ti < ∞) = 1 and is transient otherwise. A recurrent
state is positive recurrent if E[Ti] < ∞ and is null recurrent otherwise. A Markov
chain is called positive recurrent if all of its states are positive recurrent.

Lemma

If a Markov chain is irreducible and one of its states is positive (null) recurrent,
then all of its states are positive (null) recurrent.

Lemma

If state i of a Markov chain is aperiodic, then limt→∞ π
(t)
i = 1/E[Ti].
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Markov chain theory Recurrence

Ergodic theorem

Theorem

For an irreducible and aperiodic Markov chain,

if the Markov chain is positive recurrent, then there exists a unique π
so that π = πP and limt→∞ π(t) = π with πi = 1/E[Ti],

if there exists a positive vector π such that π = πP and
∑

i πi = 1,
then it must be the stationary distribution and limt→∞ π(t) = π, and

if there exists a positive vector π such that π = πP and
∑

i πi is
infinite, then a stationary distribution does not exist and

limt→∞ π
(t)
i = 0 for all i.

If the chain is irreducible, aperiodic, and positive recurrent, we call it
ergodic.

When the state-space of the Markov chain has continuous support, then
we talk about probabilities of being in sets, e.g. πi = P (θ ∈ Ai).
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AR1 example

Autoregressive process of order 1

Let the transition distribution be

θ(t)|θ(t−1) ∼ N(µ+ ρ[θ(t−1) − µ], σ2).

with |ρ| < 1. This defines an autoregressive process of order 1.

It is

irreducible

aperiodic, and

positive recurrent.

Thus this Markov chain has a stationary distribution and converges to that
stationary distribution.
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AR1 example

Autoregressive process of order 1
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AR1 example

Stationary distribution for AR1 process

Let θ(t)|θ(t−1) ∼ N(µ+ ρ[θ(t−1) − µ], σ2), or, equivalently

θ(t) = µ+ ρ[θ(t−1) − µ] + ϵt

where ϵt ∼ N(0, σ2). If θ(t−1) ∼ N(µ, σ2/[1− ρ2]), then

E[θ(t)] = µ

V [θ(t)] = ρ2 σ2

1−ρ2
+ σ2 = σ2

1−ρ2

Thus θ(t) ∼ N(µ, σ2/[1− ρ2]) is the stationary distribution for an AR1
process.
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AR1 example

Approximate via simulation

mu = 10; sigma = 4; rho = 0.9
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AR1 example

Summary

Markov chains converge to their stationary distribution if the chain is
ergodic, i.e. it is

aperiodic,

irreducible, and

positive recurrent

MCMC algorithms, e.g. Gibbs sampling, Metropolis-Hastings, and
Metropolis-within-Gibbs, by construction

have a unique stationary distribution p(θ|y) and
converge to that stationary distribution.
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