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What we have covered

What we have covered

Chapters

Probability and inference (Ch 1)

Single-parameter models (Ch 2)

Introduction to multiparameter models (Ch 3)

Asymptotics and connections to non-Bayesian approaches (Ch 4)

Hierarchical models (Ch 5)

Model checking (Ch 6)

Bayesian hypothesis tests (Sec 7.4)

Decision theory (Sec 9.1)

Stan
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What we have covered Probability and inference

Probability and inference (Ch 1)

Three steps of Bayesian data analysis (Sec 1.1)

Set up a full probability model: p(y |θ) and p(θ)
Condition on observed data: p(θ|y)
Evaluate the fit of the model: p(y rep|y)

Bayesian inference via Bayes’ rule (Sec 1.3)

Parameter posteriors: p(θ|y) ∝ p(y |θ)p(θ)
Predictions: p(ỹ |y) =

∫
p(ỹ |θ)p(θ|y)dθ

Model probabilities p(M|y) ∝ p(y |M)p(M) where
p(y |M) =

∫
p(y |θ,M)p(θ|M)dθ.

Interpreting Bayesian probabilities (Sec 1.5)

Epistemic probability: my belief
Frequency probability: long run percentage

Computation (Sec 1.9)

Inference via simulations
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∫
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What we have covered Single-parameter models

Single-parameter models (Ch 2)

General

Priors

Conjugate (Sec 2.4)

Default - Jeffreys (Sec 2.8)

Weakly informative (Sec 2.9)

Posteriors

Compromise between data
and prior (2.2)

Point estimation

Credible intervals (Sec 2.3)

Specific models

Binomial (Sec 2.1–2.4)

Normal, unknown mean (Sec
2.5)

Normal, unknown variance
(Sec 2.6)

Poisson (Sec 2.6)

Exponential (Sec 2.6)

Poisson with exposure (Sec
2.7)
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What we have covered Single-parameter models

Single-parameter models (Ch 2)

Additional comments:

Deriving posteriors using the kernel

Discrete priors are conjugate

Mixtures of conjugate priors are conjugate

Point estimation depends on utility function

Mean minimizes squared error
Median minimizes absolute error
Mode is obtained as a limit of minimizing a sequence of 0-1 errors

Credible intervals

One-tailed
Equal-tailed
Highest posterior density
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What we have covered Introduction to multiparameter models

Introduction to multiparameter models (Ch 3)

Joint posterior

p(θ1, . . . , θn|y) ∝ p(y |θ1, . . . , θn)p(θ1, . . . , θn)

Marginal posterior

p(θ1|y) =

∫
· · ·
∫

p(θ1, . . . , θn|y)dθ2 · · · dθn

Conditional posteriors

p(θ2, . . . , θn|θ1, y) ∝ p(θ1, . . . , θn|y)

Posterior decomposition, e.g.

p(θ1, . . . , θn|y) = p(θ1|y)
n∏

i=2

p(θi |θ1:i−1, y)

where 1 : i − 1 = 1, 2, . . . , i − 1.

Conditional independence, e.g.

p(θi |θ1:i−1, y) = p(θi |θi−1, y)
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What we have covered Introduction to multiparameter models

Normal model

Normal model with default prior (Sec 3.2)

yi
iid∼ N(µ, σ2) p(µ, σ2) ∝ 1/σ2

results in
p(µ, σ2|y) = N(y , σ2/n)Inv-χ2(n − 1, s2)

where s2 = 1
n−1

∑n
i=1(yi − y)2.

Normal model with conjugate prior (Sec 3.3)

y
iid∼ N(µ, σ2) µ|σ2 ∼ N(µ0, σ

2/κ0) σ2 ∼ Inv-χ2(ν0, σ
2
0)

results in

p(µ, σ2|y) = N

(
κ0µ0 + ny

κ0 + n
,

σ2

κ0 + n

)
Inv-χ2(ν0 + n, σ2n)

where σ2n =
[
ν0σ

2
0 + (n − 1)s2 + κ0n

κ0+n (y − µ0)2
]
/(ν0 + n).
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What we have covered Introduction to multiparameter models

Data asymptotics (Ch 4)

Consider a model yi
iid∼ p(y |θ0) for some true value θ0.

Posterior convergence:
If A is a neighborhood of θ0, then Pr(θ ∈ A|y)→ 1.

Point estimation:
θ̂Bayes → θ̂MLE

p→ θ0

Limiting distribution:

θ|y d→ N

(
θ̂,

1

n
I(θ̂)−1

)
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What we have covered Introduction to multiparameter models

Asymptotics - What can go wrong?

Not unique to Bayesian statistics

Unidentified parameters
Number of parameters increase with sample size
Aliasing
Unbounded likelihoods
Tails of the distribution
True sampling distribution is not p(y |θ)

Unique to Bayesian statistics

Improper posterior
Prior distributions that exclude the point of convergence
Convergence to the edge of the parameter space
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What we have covered Hierarchical models

Hierarchical models (Ch 5)

Hierarchical model (Ch 5):

p(θ, φ|y) ∝ p(y |θ)p(θ|φ)p(φ)

Exchangeability (Sec 5.2)

p(y1, . . . , yn) = p(yπ1 , . . . , yπn)

Hierarchical binomial model (Sec 5.3):

yi
iid∼ Bin(ni , θi ) θi

iid∼ Be(α, β)

Hierarchical Poisson (with exposure) model

yi
iid∼ Po(xiλi ) λi

iid∼ Ga(µβ, β)

Hierarchical normal model (Sec 5.4)

yij
iid∼ N(µj , σ

2
j ) µj

iid∼ N(η, τ2) σ2j
iid∼ Ga(α, β)
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What we have covered Model checking

Model checking (Ch 6)

Data replications

p(y rep|y) =

∫
p(y rep|θ)p(θ|y)dθ

Graphical posterior predictive checks (Sec 6.4)

Posterior predictive pvalues (Sec 6.3)

pB = P(T (y rep, θ) ≥ T (y , θ)|y)

for a test statistic T (y , θ).
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What we have covered Model checking

Hypothesis testing (Section 7.4)

From a Bayesian perspective,

Simple: Hi : θ = θi Composite: Hi : θ ∈ (θi , θi+1]

Treat all simple (or all composite) hypotheses as formal Bayesian
parameter estimation. Treat a mix of simple and composite hypotheses as
formal Bayesian tests.

Formal Bayesian tests

require prior probabilities for each hypothesis, p(Hi ),

require priors for parameters in non-point hypotheses, p(θ|Hi ), and

calculate posterior probabilities p(Hi |y) which depend on

the marginal likelihood, p(y |Hi ).
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What we have covered Decision theory

Decision theory (Sec 9.1)

In order to make a decision, a utility (or loss) function, i.e.
U(θ, δ) = −L(θ, δ), must be set.

Then the optimal Bayesian decision is to
maximize expected utility (or minimize expected loss), i.e.

argmaxδ

∫
U(θ, δ)p(θ)dθ

where p(θ) represents your current state of belief, i.e. it could be a prior or
a posterior depending on your perspective.
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What we have covered Stan

Stan

model = "

data {
int<lower=0> N;

int<lower=0> n[N];

int<lower=0> y[N];

real s;

}
parameters {

real<lower=0,upper=1> mu;

real<lower=0> eta;

}
transformed parameters {

real<lower=0> alpha;

real<lower=0> beta;

alpha <- eta * mu;

beta <- eta * (1-mu);

}
model {

mu ~ beta(20,30);

eta ~ lognormal(0,s);

y ~ beta_binomial(n,alpha,beta);

}
generated quantities {

real<lower=0,upper=1> theta[N];

for (i in 1:N) theta[i] <- beta_rng(alpha+y[i], beta+n[i]-y[i]);

}
"
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