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Modeling

Statistical modeling

A statistical model is a pair (S,P) where S is the set of possible observations, i.e. the sample
space, and P is a set of probability distributions on S.

Typically, assume a parametric model
p(y|θ)

where

y is our data and

θ is unknown parameter vector.

The

allowable values for θ determine P and

the support of p(y|θ) is the set S.
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Modeling Binomial

Binomial model

Suppose we will collect data were we have

the number of success y

out of some number of attempts n

where each attempt is independent

with a common probability of success θ.

Then a reasonable statistical model is
Y ∼ Bin(n, θ).

Formally,

S = {0, 1, 2, . . . , n} and

P = {Bin(n, θ) : 0 < θ < 1}.
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Modeling Normal

Normal model

Suppose we have one datum

real number,

has a mean µ and variance σ2, and

uncertainty is represented by a bell-shaped curve.

Then a reasonable statistical model is
Y ∼ N(µ, σ2).

Marginally,

S = {y : y ∈ R}

P = {N(µ, σ2) : −∞ < µ < ∞, 0 < σ2 < ∞} where θ = (µ, σ2).
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Modeling Normal

Normal model

Suppose our data are

n real numbers,

each has a mean µ and variance is σ2,

a histogram is reasonably approximated by a bell-shaped curve, and

each observation is independent of the others.

Then a reasonable statistical model is
Yi

ind∼ N(µ, σ2).

Marginally,

S = {(y1, . . . , yn) : yi ∈ R, i ∈ {1, 2, . . . , n}}

P = {Nn(µ, σ
2I) : −∞ < µ < ∞, 0 < σ2 < ∞} where θ = (µ, σ2).
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Likelihood

Likelihood

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data
when viewed as a function of the parameter (vector) θ. Generically, let p(y|θ) be the joint probability
mass/density function of the data and thus the likelihood is

L(θ) = p(y|θ)

but where y is fixed and known, i.e. it is your data.

The log-likelihood is the (natural) logarithm of the likelihood, i.e.

ℓ(θ) = logL(θ).

Intuition: The likelihood describes the relative support in the data for different values of your
parameter, i.e. the larger the likelihood is the more consistent that parameter value is with the data.
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Likelihood Binomial

Binomial likelihood

Suppose Y ∼ Bin(n, θ), then

p(y|θ) =
(
n

y

)
θy(1− θ)n−y.

where θ is considered fixed (but often unknown) and the argument to this function is y.

Thus the likelihood is

L(θ) =

(
n

y

)
θy(1− θ)n−y

where y is considered fixed and known and the argument to this function is θ.

Note: I write L(θ) without any conditioning, e.g. on y, so that you don’t confuse this with a
probability mass (or density) function.
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Likelihood Binomial

Binomial likelihood
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Likelihood Independent observations

Likelihood for independent observations

Suppose Yi are independent with marginal probability mass/density function p(yi|θ).

The joint distribution for y = (y1, . . . , yn) is

p(y|θ) =
n∏

i=1

p(yi|θ).

The likelihood for θ is

L(θ) = p(y|θ) =
n∏

i=1

p(yi|θ)

where we are thinking about this as a function of θ for fixed y.
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Likelihood Normal

Normal model

Suppose Yi
ind∼ N(µ, σ2), then

p(yi|µ, σ2) =
1√
2πσ2

e−
1

2σ2 (yi−µ)2

and

p(y|µ, σ2) =
∏n

i=1 p(yi|µ, σ2)

=
∏n

i=1
1√
2πσ2

e−
1

2σ2 (yi−µ)2

= 1
(2πσ2)n/2 e

− 1
2σ2

∑n
i=1(yi−µ)2

where µ and σ2 are fixed (but often unknown) and the argument to this function is
y = (y1, . . . , yn).
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Likelihood Normal

Normal likelihood

If Yi
ind∼ N(µ, σ2), then

p(y|µ, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2

The likelihood is

L(µ, σ) = p(y|µ, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2

where y is fixed and known and µ and σ2 are the arguments to this function.
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Likelihood Normal

Normal likelihood - example contour plot
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Maximum likelihood estimator

Maximum likelihood estimator (MLE)

Definition

The maximum likelihood estimator (MLE), θ̂MLE is the parameter value θ that maximizes the
likelihood function, i.e.

θ̂MLE = argmaxθ L(θ).

When the data are discrete, the MLE maximizes the probability of the observed data.
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Binomial MLE Derivation

Binomial MLE - derivation

If Y ∼ Bin(n, θ), then

L(θ) =

(
n

y

)
θy(1− θ)n−y.

To find the MLE,

1. Take the derivative of ℓ(θ) with respect to θ.

2. Set it equal to zero and solve for θ.

ℓ(θ) = log
(
n
y

)
+ y log(θ) + (n− y) log(1− θ)

d
dθ ℓ(θ) = y

θ − n−y
1−θ

set
= 0 =⇒

θ̂MLE = y/n

Take the second derivative of ℓ(θ) with respect to θ and check to make sure it is negative.
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Binomial MLE Graph

Binomial MLE - graphically

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
θ

lik
el

ih
oo

d

(STAT5870@ISU) I02 - Likelihood November 22, 2024 15 / 20



Binomial MLE Numerical maximization

Binomial MLE - Numerical maximization

log_likelihood <- function(theta) {
dbinom(3, size = 10, prob = theta, log = TRUE)

}

o <- optim(0.5, log_likelihood,

method='L-BFGS-B', # this method to use bounds

lower = 0.001, upper = .999, # cannot use 0 and 1 exactly

control = list(fnscale = -1)) # maximize

o$convergence # 0 means convergence was achieved

[1] 0

o$par # MLE

[1] 0.3000006

o$value # value of the likelihood at the MLE

[1] -1.321151
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Normal MLE Derivation

Normal MLE - derivation

If Yi
ind∼ N(µ, σ2), then

L(µ, σ2) = 1

(2πσ2)n/2
e
− 1

2σ2
∑n

i=1(yi−µ)2

= 1

(2πσ2)n/2
e
− 1

2σ2
∑n

i=1(yi−y+y−µ)2

= (2πσ2)−n/2 exp
(
− 1

2σ2

∑n
i=1

[
(yi − y)2 + 2(yi − y)(y − µ) + (y − µ)2

])
= (2πσ2)−n/2 exp

(
− 1

2σ2

∑n
i=1(yi − y)2 + − n

2σ2 (y − µ)2
)

since
∑n

i=1(yi − y) = 0

ℓ(µ, σ2) = −n
2

log(2πσ2) − 1
2σ2

∑n
i=1(yi − y)2 − 1

2σ2 n(y − µ)2

∂
∂µ

ℓ(µ, σ2) = n
σ2 (y − µ)

set
= 0 =⇒ µ̂MLE = y

∂
∂σ2 ℓ(µ, σ2) = − n

2σ2 + 1
2(σ2)2

∑n
i=1(yi − y)2

set
= 0

=⇒ σ̂2
MLE = 1

n

∑n
i=1(yi − y)2 = n−1

n
S2

Thus, the MLE for a normal model is

µ̂MLE = y, σ̂2
MLE =

1

n

n∑
i=1

(yi − y)2
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Normal MLE Numerical maximization

Normal MLE - numerical maximization

x

[1] -0.8969145 0.1848492 1.5878453

log_likelihood <- function(theta) {
sum(dnorm(x, mean = theta[1], sd = exp(theta[2]), log = TRUE))

}

o <- optim(c(0,0), log_likelihood,

control = list(fnscale = -1))

c(o$par[1], exp(o$par[2])^2) # numerical MLE

[1] 0.2918674 1.0344601

n <- length(x); c(mean(x), (n-1)/n*var(x)) # true MLE

[1] 0.2919267 1.0347381
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Normal MLE Graph

Normal likelihood - graph
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Summary

Summary

For independent observations, the joint probability mass (density) function is the product
of the marginal probability mass (density) functions.

The likelihood is the joint probability mass (density) function when the argument of the
function is the parameter (vector).

The maximum likelihood estimator (MLE) is the value of the parameter (vector) that
maximizes the likelihood.
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