Why *p*-values don't mean what you think they mean.

STAT 587 (Engineering) Iowa State University

January 25, 2021

p-values

From the ASA statement on *p*-values:

a *p*-value is the probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value.

Do you have a random sample from your population? If not, then you cannot make a statistically valid statement about the population.

p-values

t-test

t-test

Let $Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$ with hypotheses

$$H_0: \mu = \mu_0$$
 versus $H_A: \mu \neq \mu_0.$

Calculate

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}}$$

which has a t_{n-1} distribution if H_0 is true and the associated *p*-value

$$p$$
-value = $2P(T \le -|t|)$

where $T \sim t_{n-1}$.

You set a significance level a and reject H_0 if

p-value < a.

ASA interpretation

From the ASA:

a p-value can indicate how incompatible the data are with a specified statistical model

If you reject H_0 , the data are incompatible with the model associated with the null hypothesis. In our example,

$$H_0: Y_i \stackrel{ind}{\sim} N(\mu_0, \sigma^2).$$

So perhaps

- the data are not independent,
- the data are not normal,
- the variance is not constant,
- the mean is not μ_0 , or
- you got unlucky.

Context matters

From the ASA statement:

Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.

Imagine these scenarios all with p-value= 0.05:

- a small-scale agricultural field trail,
- an extrasensory perception experiment,
- a large-scale clinical trial, or
- a 30,000 gene screening for disease progression.

p-values C

Context matters

A simple model

Let $Y \sim N(\mu, 1)$ and $H_0: \mu = 0$ vs $H_A: \mu \neq 0$.

You observe p-value, p = 0.05. What does it mean?

Bayes rule:

$$P(H_0|p=0.05) = \frac{P(p=0.05|H_0)P(H_0)}{P(p=0.05|H_0)P(H_0) + P(p=0.05|H_A)P(H_A)}$$

To calculate this we need

- $P(H_0) = 1 P(H_A)$ and
- $P(p = 0.05|H_A)$:
 - distribution for μ when H_A is true.

p-value shiny app

install.packages("shiny")
shiny::runGitHub("jarad/pvalue")

https://jaradniemi.shinyapps.io/pvalue/

Summary

Summary

- $\bullet~\mbox{Random}$ sample $\rightarrow~\mbox{population}$
- Model assumptions
- Context matters
- Error rate is likely much larger than significance level