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Descriptive statistics

Statistics

The field of statistics is the study of the collection, analysis, interpretation, presentation, and
organization of data.
https://en.wikipedia.org/wiki/Statistics

There are two different phases of statistics:

descriptive statistics

statistics
graphical statistics

inferential statistics

uses a sample to make statements about a population.
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Descriptive statistics Population and sample

Convenience sample

The population consists of all units of interest. Any numerical characteristic of a population is
a parameter. The sample consists of observed units collected from the population. Any
function of a sample is called a statistic.

Population: in-use routers by graduate students at Iowa State University.

Parameter: proportion of those routers that have Gigabit speed.

Sample: routers of students in STAT 5870-1/A

Statistics: proportion of routers that have gigabit speed
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Descriptive statistics Random sample

Simple random sampling

A simple random sample is a sample from the population where all subsets of the same size are
equally likely to be sampled. Random samples ensure that statistical conclusions will be valid.

Population: in-use routers by graduate students at Iowa State University.

Parameter: proportion of those routers that have Gigabit speed.

Sample: a pseudo-random number generator gives each graduate student a Unif(0,1) number
and the lowest 100 are contacted

Statistics: proportion of routers that have gigabit speed
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Descriptive statistics Random sample

Sampling and non-sampling errors

Sampling errors are caused by the mere fact that only a sample, a portion of a population, is
observed. Fortunately,

error ↓ as sample size (n) ↑

Non-sampling errors are caused by inappropriate sampling schemes and wrong statistical
techniques. Often, no statistical technique can rescue a poorly collected sample of data.

Sample: students in STAT 5870-1/A
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Descriptive statistics Statistics

Statistics and estimators

A statistic is any function of the data.

Descriptive statistics:

Sample mean, median, mode

Sample quantiles

Sample variance, standard deviation

When a statistic is meant to estimate a corresponding population parameter, we call that statistic an
estimator.
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Descriptive statistics Sample mean

Sample mean

Let X1, . . . , Xn be a random sample from a distribution with

E[Xi] = µ and V ar[Xi] = σ2

where we assume independence between the Xi.

The sample mean is

µ̂ = X =
1

n

n
∑

i=1

Xi

and estimates the population mean µ.
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Descriptive statistics Sample variance

Sample variance

Let X1, . . . , Xn be a random sample from a distribution with

E[Xi] = µ and V ar[Xi] = σ2

where we assume independence between the Xi.

The sample variance is

σ̂2 = S2 =
1

n− 1

n
∑

i=1

(Xi −X)2 =

∑

n

i=1
X2

i
− nX

2

n− 1

and estimates the population variance σ2.

The sample standard deviation is σ̂ =
√
σ̂2 and estimates the population standard deviation.
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Descriptive statistics Quantiles

Quantiles

A p-quantile of a population is a number x that solves

P (X < x) ≤ p and P (X > x) ≤ 1− p.

A sample p-quantile is any number that exceeds at most 100p% of the sample, and is exceeded by at
most 100(1− p)% of the sample. A 100p-percentile is a p-quantile. First, second, and third quartiles
are the 25th, 50th, and 75th percentiles. They split a population or a sample into four equal parts. A
median is a 0.5-quantile, 50th percentile, and 2nd quartile.

The interquartile range is the third quartile minus the first quartile, i.e.

IQR = Q3 −Q1

and the sample interquartile range is the third sample quartile minus the first sample quartile, i.e.

ÎQR = Q̂3 − Q̂1
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Descriptive statistics Quantiles

Standard normal quartiles
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Descriptive statistics Quantiles

Sample quartiles from a standard normal
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Descriptive statistics Properties of statistics and estimators

Properties of statistics and estimators

Statistics can have properties, e.g.

standard error

Estimators can have properties, e.g.

unbiased

consistent
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Descriptive statistics Standard error

Standard error

The standard error of a statistic θ̂ is the standard deviation of that statistic (when the data are
considered random).

If Xi are independent and have V ar[Xi] = σ2, then

V ar
[

X
]

= V ar
[

1

n

∑

n

i=1
Xi

]

= 1

n2

∑

n

i=1
V ar[Xi] =

1

n2

∑

n

i=1
σ2 = σ

2

n

and thus

SD
[

X
]

=
√

V ar
[

X
]

= σ/
√
n.

Thus the standard error of the sample mean is σ/
√
n.
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Descriptive statistics Unbiased

Unbiased

An estimator θ̂ is unbiased for a parameter θ if its expectation (when the data are considered
random) equals the parameter, i.e.

E[θ̂] = θ.

The sample mean is unbiased for the population mean µ since

E
[

X
]

= E

[

1

n

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

E[Xi] = µ.

and the sample variance is unbiased for the population variance σ2.
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Descriptive statistics Consistent

Consistent

An estimator θ̂, or θ̂n(x), is consistent for a parameter θ if the probability of its sampling error
of any magnitude converges to 0 as the sample size n increases to infinity, i.e.

P
(∣

∣

∣
θ̂n(X)− θ

∣

∣

∣
> ϵ

)

→ 0 as n → ∞

for any ϵ > 0.

The sample mean is consistent for µ since V ar
[

X
]

= σ2/n and

P
(∣

∣X − µ
∣

∣ > ϵ
)

≤
V ar

[

X
]

ϵ2
=

σ2/n

ϵ2
→ 0

where the inequality is from Chebyshev’s inequality.
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Descriptive statistics Binomial example

Binomial example

Suppose Y ∼ Bin(n, θ) where θ is the probability of success. The statistic θ̂ = Y/n is an
estimator of θ.

Since

E
[

θ̂
]

= E

[

Y

n

]

=
1

n
E[Y ] =

1

n
nθ = θ

the estimator is unbiased.
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Descriptive statistics Binomial example

Binomial example

Suppose Y ∼ Bin(n, θ) where θ is the probability of success. The statistic θ̂ = Y/n is an
estimator of θ.

The variance of the estimator is

V ar
[

θ̂
]

= V ar

[

Y

n

]

=
1

n2
V ar[Y ] =

1

n2
nθ(1− θ) =

θ(1− θ)

n
.

Thus the standard error is

SE(θ̂) =

√

V ar[θ̂] =

√

θ(1− θ)

n
.

By Chebychev’s inequality, this estimator is consistent for θ.
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Descriptive statistics Summary

Summary

Statistics are functions of data.

Statistics have some properties:

Standard error

Estimators are statistics that estimate population parameters.

Estimators may have properties:

Unbiased
Consistent
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Graphical statistics

Look at it!

Before you do anything with a data set,
LOOK AT IT!
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Graphical statistics

Why should you look at your data?

1. Find errors

Do variables have the correct range, e.g. positive?
How are Not Available encoded?
Are there outliers?

2. Do known or suspected relationships exist?

Is X linearly associated with Y?
Is X quadratically associated with Y?

3. Are there new relationships?

What is associated with Y and how?

4. Do variables adhere to distributional assumptions?

Does Y have an approximately normal distribution?
Right/left skew
Heavy tails
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Graphical statistics

Principles of professional statistical graphics

https://moz.com/blog/data-visualization-principles-lessons-from-tufte

Show the data

Avoid distorting the data, e.g. pie charts, 3d pie charts, exploding wedge 3d pie charts, bar
charts that do not start at zero

Plots should be self-explanatory

Use informative caption, legend
Use normative colors, shapes, etc

Have a high information to ink ratio

Avoid bar charts

Encourage eyes to compare

Use size, shape, and color to highlight differences
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Graphical statistics

Stock market return
http://www.nytimes.com/interactive/2011/01/02/business/20110102-metrics-graphic.html?_r=0
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Modeling

Statistical modeling

A statistical model is a pair (S,P) where S is the set of possible observations, i.e. the sample
space, and P is a set of probability distributions on S.

Typically, assume a parametric model
p(y|θ)

where

y is our data and

θ is unknown parameter vector.

The

allowable values for θ determine P and

the support of p(y|θ) is the set S.
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Modeling Binomial

Binomial model

Suppose we will collect data were we have

the number of success y

out of some number of attempts n

where each attempt is independent

with a common probability of success θ.

Then a reasonable statistical model is
Y ∼ Bin(n, θ).

Formally,

S = {0, 1, 2, . . . , n} and

P = {Bin(n, θ) : 0 < θ < 1}.
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Modeling Normal

Normal model

Suppose we have one datum

real number,

has a mean µ and variance σ2, and

uncertainty is represented by a bell-shaped curve.

Then a reasonable statistical model is
Y ∼ N(µ, σ2).

Marginally,

S = {y : y ∈ R}
P = {N(µ, σ2) : −∞ < µ < ∞, 0 < σ2 < ∞} where θ = (µ, σ2).
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Modeling Normal

Normal model

Suppose our data are

n real numbers,

each has a mean µ and variance is σ2,

a histogram is reasonably approximated by a bell-shaped curve, and

each observation is independent of the others.

Then a reasonable statistical model is
Yi

ind∼ N(µ, σ2).

Marginally,

S = {(y1, . . . , yn) : yi ∈ R, i ∈ {1, 2, . . . , n}}
P = {Nn(µ, σ

2I) : −∞ < µ < ∞, 0 < σ2 < ∞} where θ = (µ, σ2).
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Likelihood

Likelihood

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data
when viewed as a function of the parameter (vector) θ. Generically, let p(y|θ) be the joint probability
mass/density function of the data and thus the likelihood is

L(θ) = p(y|θ)

but where y is fixed and known, i.e. it is your data.

The log-likelihood is the (natural) logarithm of the likelihood, i.e.

ℓ(θ) = logL(θ).

Intuition: The likelihood describes the relative support in the data for different values of your
parameter, i.e. the larger the likelihood is the more consistent that parameter value is with the data.
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Likelihood Binomial

Binomial likelihood

Suppose Y ∼ Bin(n, θ), then

p(y|θ) =
(

n

y

)

θy(1− θ)n−y.

where θ is considered fixed (but often unknown) and the argument to this function is y.

Thus the likelihood is

L(θ) =

(

n

y

)

θy(1− θ)n−y

where y is considered fixed and known and the argument to this function is θ.

Note: I write L(θ) without any conditioning, e.g. on y, so that you don’t confuse this with a
probability mass (or density) function.
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Likelihood Binomial

Binomial likelihood
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Likelihood Independent observations

Likelihood for independent observations

Suppose Yi are independent with marginal probability mass/density function p(yi|θ).

The joint distribution for y = (y1, . . . , yn) is

p(y|θ) =
n
∏

i=1

p(yi|θ).

The likelihood for θ is

L(θ) = p(y|θ) =
n
∏

i=1

p(yi|θ)

where we are thinking about this as a function of θ for fixed y.
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Likelihood Normal

Normal model

Suppose Yi
ind∼ N(µ, σ2), then

p(yi|µ, σ2) =
1√
2πσ2

e−
1

2σ2 (yi−µ)2

and

p(y|µ, σ2) =
∏n

i=1 p(yi|µ, σ2)

=
∏n

i=1
1√
2πσ2

e−
1

2σ2 (yi−µ)2

= 1
(2πσ2)n/2 e

− 1
2σ2

∑n
i=1(yi−µ)2

where µ and σ2 are fixed (but often unknown) and the argument to this function is
y = (y1, . . . , yn).
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Likelihood Normal

Normal likelihood

If Yi
ind∼ N(µ, σ2), then

p(y|µ, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2

The likelihood is

L(µ, σ) = p(y|µ, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2

where y is fixed and known and µ and σ2 are the arguments to this function.
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Likelihood Normal

Normal likelihood - example contour plot
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Maximum likelihood estimator

Maximum likelihood estimator (MLE)

Definition

The maximum likelihood estimator (MLE), θ̂MLE is the parameter value θ that maximizes the
likelihood function, i.e.

θ̂MLE = argmaxθ L(θ).

When the data are discrete, the MLE maximizes the probability of the observed data.
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Binomial MLE Derivation

Binomial MLE - derivation

If Y ∼ Bin(n, θ), then

L(θ) =

(

n

y

)

θy(1− θ)n−y.

To find the MLE,

1. Take the derivative of ℓ(θ) with respect to θ.

2. Set it equal to zero and solve for θ.

ℓ(θ) = log
(

n
y

)

+ y log(θ) + (n− y) log(1− θ)
d
dθ ℓ(θ) = y

θ − n−y
1−θ

set
= 0 =⇒

θ̂MLE = y/n

Take the second derivative of ℓ(θ) with respect to θ and check to make sure it is negative.
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Binomial MLE Graph

Binomial MLE - graphically
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Binomial MLE Numerical maximization

Binomial MLE - Numerical maximization

log_likelihood <- function(theta) {
dbinom(3, size = 10, prob = theta, log = TRUE)

}

o <- optim(0.5, log_likelihood,

method='L-BFGS-B', # this method to use bounds

lower = 0.001, upper = .999, # cannot use 0 and 1 exactly

control = list(fnscale = -1)) # maximize

o$convergence # 0 means convergence was achieved

[1] 0

o$par # MLE

[1] 0.3000006

o$value # value of the likelihood at the MLE

[1] -1.321151
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Normal MLE Derivation

Normal MLE - derivation

If Yi

ind∼ N(µ, σ2), then

L(µ, σ2) = 1

(2πσ2)n/2
e
−

1
2σ2

∑n
i=1(yi−µ)2

= 1

(2πσ2)n/2
e
−

1
2σ2

∑n
i=1(yi−y+y−µ)2

= (2πσ2)−n/2 exp
(

−
1

2σ2

∑n
i=1

[

(yi − y)2 + 2(yi − y)(y − µ) + (y − µ)2
])

= (2πσ2)−n/2 exp
(

−
1

2σ2

∑n
i=1(yi − y)2 + −

n
2σ2 (y − µ)2

)

since
∑n

i=1(yi − y) = 0

ℓ(µ, σ2) = −
n
2

log(2πσ2) −
1

2σ2

∑n
i=1(yi − y)2 −

1
2σ2 n(y − µ)2

∂
∂µ

ℓ(µ, σ2) = n
σ2 (y − µ)

set
= 0 =⇒ µ̂MLE = y

∂
∂σ2 ℓ(µ, σ2) = −

n
2σ2 + 1

2(σ2)2

∑n
i=1(yi − y)2

set
= 0

=⇒ σ̂2
MLE = 1

n

∑n
i=1(yi − y)2 = n−1

n
S2

Thus, the MLE for a normal model is

µ̂MLE = y, σ̂2

MLE
=

1

n

n
∑

i=1

(yi − y)2
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Normal MLE Numerical maximization

Normal MLE - numerical maximization

x

[1] -0.8969145 0.1848492 1.5878453

log_likelihood <- function(theta) {
sum(dnorm(x, mean = theta[1], sd = exp(theta[2]), log = TRUE))

}

o <- optim(c(0,0), log_likelihood,

control = list(fnscale = -1))

c(o$par[1], exp(o$par[2])^2) # numerical MLE

[1] 0.2918674 1.0344601

n <- length(x); c(mean(x), (n-1)/n*var(x)) # true MLE

[1] 0.2919267 1.0347381
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Normal MLE Graph

Normal likelihood - graph
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Summary

Summary

For independent observations, the joint probability mass (density) function is the product
of the marginal probability mass (density) functions.

The likelihood is the joint probability mass (density) function when the argument of the
function is the parameter (vector).

The maximum likelihood estimator (MLE) is the value of the parameter (vector) that
maximizes the likelihood.
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Outline

Bayesian parameter estimation

Condition on what is known
Describe belief using probability
Terminology

Prior → posterior

Posterior expectation

Credible intervals

Binomial example

Beta distribution
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Bayesian statistics

A Bayesian statistician

Let

y be the data we will collect from an experiment,

K be everything we know for certain about the world (aside from y), and

θ be anything we don’t know for certain.

My definition of a Bayesian statistician is an individual who makes decisions based on the
probability distribution of those things we don’t know conditional on what we know, i.e.

p(θ|y,K).

Typically, the K is dropped from the notation.
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Bayesian statistics

Bayes’ Rule

Bayes’ Rule applied to a partition P = {A1, A2, . . .},

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)
∑

∞

i=1
P (B|Ai)P (Ai)

Bayes’ Rule also applies to probability density (or mass) functions, e.g.

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)
∫

p(y|θ)p(θ)dθ

where the integral plays the role of the sum in the previous statement.
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Bayesian statistics Parameter estimation

Parameter estimation

Let y be data from some model with unknown parameter (vector) θ. Then

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)
∫

p(y|θ)p(θ)dθ

and we use the following terminology
Terminology Notation

Posterior p(θ|y)
Prior p(θ)
Model (likelihood) p(y|θ)
Prior predictive p(y)
(marginal likelihood)

Bayesian parameter estimation involves updating your prior belief about θ, p(θ), into a
posterior belief about θ, p(θ|y), based on the data observed.
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Bayesian statistics Parameter estimation

Bayesian notation

We now have two distributions for our parameter θ: prior and posterior. To distinguish these
two, we will have no conditioning in the prior and we will condition on y in the posterior.
For example,

Prior Posterior

Density p(θ) p(θ|y)
Expectation E[θ] E[θ|y]
Variance V ar[θ] V ar[θ|y]
Probabilities P (θ < c) P (θ < c|y)
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Bayesian statistics Parameter estimation

Binomial model

Suppose Y ∼ Bin(n, θ), then

p(y|θ) =

(

n

y

)

θy(1− θ)n−y.

A reasonable default prior is the uniform distribution on the interval (0, 1)

p(θ) = I(0 < θ < 1).

Using Bayes Rule, you can find

θ|y ∼ Be(1 + y, 1 + n− y).
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Bayesian statistics Parameter estimation

Beta distribution

The beta distribution defines a distribution for a probability, i.e. a number on the interval (0,1). The
probability density function is

p(θ) =
θa−1(1− θ)b−1

Beta(a, b)
I(0 < θ < 1)

where a, b > 0 and Beta is the beta function, i.e.

Beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
and Γ(a) =

∫

∞

0

xa−1e−xdx.

The beta distribution has the following properties:

E[θ] = a

a+b
,

V ar[θ] = ab

(a+b)2(a+b+1) , and

Be(1, 1)
d
= Unif(0, 1).
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Bayesian statistics Parameter estimation

Beta densities
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Bayesian statistics Parameter estimation

Beta posterior

Suppose we have made 100 sensors according to a particular protocol and 2 have a sensitivity
below a pre-determined threshold. Let Y be the number below the threshold. Assume
Y ∼ Bin(n, θ) with n = 100 and θ ∼ Be(1, 1), then

θ|y ∼ Be(1 + y, 1 + n− y)
d
= Be(3, 99).
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Bayesian statistics Parameter estimation

Posterior density
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Bayesian statistics Parameter estimation

Posterior expectation

Often times it is inconvenient to provide a full posterior and so we often summarize using a
point estimate from the posterior. For a point estimate, we can use the posterior expectation:

θ̂Bayes = E[θ|y] =
1 + y

(1 + y) + (1 + n− y)
=

1 + y

2 + n

(1 + y) / (2 + n)

[1] 0.02941176

Note that this is close, but not exactly equal to θ̂MLE = y/n. Since the MLE is unbiased, this
posterior expectation will generally be biased but it is still consistent since θ̂Bayes → θ̂MLE .
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Bayesian statistics Parameter estimation

Credible intervals

A 100(1− a)% credible interval is any interval (L,U) such that

1− a =

∫ U

L

p(θ|y) dθ.

An equal-tail 100(1− a)% credible interval is the interval (L,U) such that

a/2 =

∫ L

−∞

p(θ|y) dθ =

∫

∞

U

p(θ|y) dθ.

# 95% credible interval is

ci <- qbeta(c(.025, .975), 1 + y, 1 + n - y)

round(ci, 3)

[1] 0.006 0.070
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Bayesian statistics Parameter estimation

Equal-tail 95% credible interval
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Bayesian statistics Parameter estimation

Summary

Bayesian parameter estimation involves

1. Specifying a model p(y|θ) for your data.

2. Specifying a prior p(θ) for the parameter.

3. Deriving the posterior

p(θ|y) =
p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ).

This equation updates your prior belief, p(θ), about the unknown parameter θ into your
posterior belief, p(θ|y), about θ.

4. Calculating quantities of interest, e.g.

Posterior expectation, E[θ|y]
Credible interval
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Bayesian statistics Parameter estimation

Bayesian analysis for binomial model summary

Let Y ∼ Bin(n, θ) and assume θ ∼ Be(a, b). Then

θ|y ∼ Be(a+ y, b+ n− y).

A default prior is θ ∼ Be(1, 1)
d
= Unif(0, 1).

R code for binomial analysis:

a <- 1; b <- 1 # default uniform prior

y <- 3; n <- 10 # data

curve(dbeta(x, ay, b + n - y)) # posterior (pdf)

(a + y)/(a + b + n) # posterior mean

qbeta(.5, a + y, b + n - y) # posterior median

qbeta(c(.025, .975), a + y, b + n - y) # 95% equal tail credible interval

# Probabilities

pbeta(0.5, a + y, b + n - y) # P(theta < 0.5|y)

# Special cases

qbeta(c(0, .95), a + y, b + n - y) # if y=0, use a lower one-sided CI

qbeta(c(.05, 1), a + y, b + n - y) # if y=n, use a upper one-sided CI
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Exponential distribution Probability density function

Exponential distribution

The random variable X has an exponential distribution with rate parameter λ > 0 if its

probability density function is

p(x|λ) = λe−λx I(x > 0).

We write X ∼ Exp(λ).
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Exponential distribution Probability density function - graphically

Exponential probability density function
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Exponential distribution Mean and variance

Exponential mean and variance

If X ∼ Exp(λ), then

E[X] =

∫

∞

0
xλe−λxdx = · · · =

1

λ

and

V ar[X] =

∫

∞

0

(

x−
1

λ

)2

λe−λxdx = · · · =
1

λ2
.
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Exponential distribution Cumulative distribution function

Exponential cumulative distribution function

If X ∼ Exp(λ), then its cumulative distribution function is

F (x) =

∫ x

0
λe−λtdt = · · · = 1− e−λx.

The inverse cumulative distribution function is

F−1(p) =
− log(1− p)

λ
.
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Exponential distribution Cumulative distribution function - graphically

Exponential cumulative distribution function - graphically
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Exponential distribution Memoryless property

Memoryless property

Let X ∼ Exp(λ), then
P (X > x+ c|X > c) = P (X > x).
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Exponential distribution Parameterization by the scale

Parameterization by the scale

A common alternative parameterization of the exponential distribution uses the scale β = 1
λ .

In this parameterization, we have

f(x) =
1

β
e−x/β I(x > 0)

and

E[X] = β and V ar[X] = β2.
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Exponential distribution Summary

Summary

Exponential random variable

X ∼ Exp(λ), λ > 0

f(x) = λe−λx, x > 0

F (x) = 1− e−λx

F−1(p) = − log(1−p)
λ

E[X] = 1
λ

V ar[X] = 1
λ2
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Gamma distribution Probability density function

Gamma distribution

The random variable X has a gamma distribution with

shape parameter α > 0 and

rate parameter λ > 0

if its probability density function is

p(x|α, λ) =
λα

Γ(α)
xα−1e−λx I(x > 0)

where Γ(α) is the gamma function,

Γ(α) =

∫

∞

0
xα−1e−xdx.

We write X ∼ Ga(α, λ).
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Gamma distribution Probability density function - graphically

Gamma probability density function
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Gamma distribution Mean and variance

Gamma mean and variance

If X ∼ Ga(α, λ), then

E[X] =

∫

∞

0
x

λα

Γ(α)
xα−1e−λxdx = · · · =

α

λ

and

V ar[X] =

∫

∞

0

(

x−
α

λ

)2 λα

Γ(α)
xα−1e−λxdx = · · · =

α

λ2
.
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Gamma distribution Cumulative distribution function

Gamma cumulative distribution function

If X ∼ Ga(α, λ), then its cumulative distribution function is

F (x) =

∫ x

0

λα

Γ(α)
tα−1e−λtdt = · · · =

γ(α, βx)

Γ(α)

where γ(α, βx) is the incomplete gamma function, i.e.

γ(α, βx) =

∫ βx

0
tα−1e−tdt.
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Gamma distribution Cumulative distribution function - graphically

Gamma cumulative distribution function - graphically
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Gamma distribution Relationship to exponential distribution

Relationship to exponential distribution

If Xi
iid
∼ Exp(λ), then

Y =

n
∑

i=1

Xi ∼ Ga(n, λ).

Thus, Ga(1, λ)
d
= Exp(λ).
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Gamma distribution Parameterization by the scale

Parameterization by the scale

A common alternative parameterization of the Gamma distribution uses the scale θ = 1
λ . In

this parameterization, we have

f(x) =
1

Γ(α)θα
xα−1e−x/θ I(x > 0)

and

E[X] = αθ and V ar[X] = αθ2.
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Gamma distribution Summary

Summary

Gamma random variable

X ∼ Ga(α, λ), α, λ > 0

f(x) = λα

Γ(α)x
α−1e−λx, x > 0

E[X] = α
λ

V ar[X] = α
λ2
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Inverse gamma distribution Probability density function

Inverse gamma distribution

The random variable X has an inverse gamma distribution with

shape parameter α > 0 and

scale parameter β > 0

if its probability density function is

f(x) =
βα

Γ(α)
x−α−1e−β/x I(x > 0).

where Γ(α) is the gamma function,

Γ(α) =

∫

∞

0
xα−1e−xdx.

We write X ∼ IG(α, β).
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Inverse gamma distribution Probability density function - graphically

Inverse gamma probability density function
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Inverse gamma distribution Mean and variance

Inverse gamma mean and variance

If X ∼ IG(α, β), then

E[X] =

∫

∞

0
x

βα

Γ(α)
x−α−1e−β/xdx = · · · =

β

α− 1
, α > 1

and

V ar[X] =
∫

∞

0

(

x−
β

α−1

)2
βα

Γ(α)x
−α−1e−β/xdx

= · · · = β2

(α−1)2(α−2)
, α > 2.
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Inverse gamma distribution Relationship to gamma distribution

Relationship to gamma distribution

If X ∼ Ga(α, λ) where λ is the rate parameter, then

Y =
1

X
∼ IG(α, λ).
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Inverse gamma distribution Summary

Summary

Inverse gamma random variable

X ∼ IG(α, β), α, β > 0

f(x) = βα

Γ(α)x
−α−1e−β/x, x > 0

E[X] = β
α−1 , α > 1

V ar[X] = β2

(α−1)2(α−2)
, α > 2
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Student’s t distribution Probability density function

Student’s t distribution

The random variable X has a Student’s t distribution with degrees of freedom ν > 0 if its

probability density function is

p(x|ν) = Γ
(

ν+1

2

)

√
νπΓ(ν

2
)

(

1 +
x2

ν

)− ν+1

2

where Γ(α) is the gamma function,

Γ(α) =

∫ ∞

0

xα−1e−xdx.

We write X ∼ tν .
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Student’s t distribution Probability density function - graphically

Student’s t probability density function
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Student’s t distribution Mean and variance

Student’s t mean and variance

If T ∼ tv, then

E[X] =

∫ ∞

−∞
x

Γ
(

ν+1

2

)

√
νπΓ(ν

2
)

(

1 +
x2

ν

)− ν+1

2

dx = · · · = 0, ν > 1

and

V ar[X] =

∫ ∞

0

(x− 0)2
Γ
(

ν+1

2

)

√
νπΓ(ν

2
)

(

1 +
x2

ν

)− ν+1

2

dx = · · · = ν

ν − 2
, ν > 2.
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Student’s t distribution Cumulative distribution function - graphically

Gamma cumulative distribution function - graphically
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Generalized Student’s t distribution Location-scale t distribution

Location-scale t distribution

If X ∼ tν , then
Y = µ+ σX ∼ tν(µ, σ

2)

for parameters:

degrees of freedom ν > 0,

location µ and

scale σ > 0.

By properties of expectations and variances, we can

find that

E[Y ] = µ, ν > 1

and

V ar[Y ] =
ν

ν − 2
σ2, ν > 2.
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Generalized Student’s t distribution Probability density function

Generalized Student’s t probability density function

The random variable Y has a generalized Student’s t distribution with

degrees of freedom ν > 0,

location µ, and

scale σ > 0

if its probability density function is

p(y) =
Γ
(

ν+1

2

)

Γ(ν
2
)
√
νπσ

(

1 +
1

ν

[

y − µ

σ

]2
)− ν+1

2

We write Y ∼ tν(µ, σ
2).
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Generalized Student’s t distribution Probability density function - graphically

Generalized Student’s t probability density function
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Generalized Student’s t distribution t with 1 degree of freedom

t with 1 degree of freedom

If T ∼ t1(µ, σ
2), then T has a Cauchy distribution and we write

T ∼ Ca(µ, σ2).

If T ∼ t1(0, 1), then T has a standard Cauchy distribution. A Cauchy random variable has no

mean or variance.
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Generalized Student’s t distribution As degrees of freedom increases

As degrees of freedom increases

If Tν ∼ tν(µ, σ
2), then

lim
ν→∞

Tν

d
= X ∼ N(µ, σ2)
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Generalized Student’s t distribution t distribution arise from a normal sample

t distribution arising from a normal sample

Let Xi

iid∼ N(µ, σ2). We calculate the sample mean

X =
1

n

n
∑

i=1

Xi

and the sample variance

S2 =
1

n− 1

n
∑

i=1

(Xi −X)2.

Then

T =
X − µ

S/
√
n

∼ tn−1.
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Generalized Student’s t distribution Inverse-gamma scale mixture of a normal

Inverse-gamma scale mixture of a normal

If

X|σ2 ∼ N(µ, σ2/n) and σ2 ∼ IG
(ν

2
,
ν

2
s2
)

then

X ∼ tν(µ, s
2/n)

which is obtained by

px(x) =

∫

px|σ2(x|σ2)pσ2(σ2)dσ2

where

px is the marginal density for x

px|σ2 is the conditional density for x given σ2, and

pσ2 is the marginal density for σ2.
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Generalized Student’s t distribution Summary

Summary

Student’s t random variable:

T ∼ tν(µ, σ
2), ν, σ > 0

E[X] = µ, ν > 1

V ar[X] = ν

ν−2
σ2, ν > 2

Relationships to other distributions
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Bayesian parameter estimation

Bayesian parameter estimation

Recall that Bayesian parameter estimation involves

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ)
with

posterior p(θ|y),
prior p(θ),

model p(y|θ), and
prior predictive p(y).

For this video, θ = (µ, σ2) and
y|µ, σ2 ∼ N(µ, σ2).
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Bayesian parameter estimation Normal model

Bayesian parameter estimation in a normal model

Let Yi

ind∼ N(µ, σ2) and the default prior

p(µ, σ2) ∝ 1

σ2
.

Note: This “prior” is not a distribution since its integral is not finite. Nonetheless, we can still derive
the following posterior

µ|y ∼ tn−1(y, s
2/n) and σ2|y ∼ IG

(

n− 1

2
,
(n− 1)s2

2

)

where

n is the sample size,

y = 1

n

∑

n

i=1
yi is the sample mean, and

s2 = 1

n−1

∑

n

i=1
(yi − y)2 is the sample variance.
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Bayesian parameter estimation Moments for the mean

Posterior for the mean

The posterior for the mean is
µ|y ∼ tn−1(y, s

2/n)

and from properties of the generalized Student’s t distribution, we know

E[µ|y] = y for n > 2,

V ar[µ|y] = (n−1)s2

(n−3)

/

n for n > 3,

and
µ− y

s/
√
n
∼ tn−1.
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Bayesian parameter estimation Credible intervals for the mean

Credible intervals for µ

Since
µ− y

s/
√
n
∼ tn−1

a 100(1− a)% equal-tail credible interval is

y ± tn−1,a/2 s/
√
n

where tn−1,a/2 is a t critical value such that P (Tn−1 < tn−1,a/2) = 1− a/2 when Tn−1 ∼ tn−1.

For example, t10−1,0.05/2 is

n = 10

a = 0.05 # 95\% CI

qt(1-a/2, df = n-1)

[1] 2.262157
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Bayesian parameter estimation Moments for the variance

Posterior for the variance

The posterior for the mean is

σ2|y ∼ IG

(

n− 1

2
,
(n− 1)s2

2

)

and from properties of the inverse Gamma distribution,
we know

E[σ2|y] = (n−1)s2

n−3 for n > 3,

and
1

σ2

∣

∣

∣

∣

y ∼ Ga

(

n− 1

2
,
(n− 1)s2

2

)

where (n− 1)s2/2 is the rate parameter.
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Bayesian parameter estimation Credible intervals for the variance

Credible intervals for σ2

For a 100(1− a)% credible interval, we need

a/2 = P (σ2 < L|y) = P (σ2 > U |y).

To do this, we will find

a/2 = P

(

1

σ2
>

1

L

∣

∣

∣

∣

y

)

= P

(

1

σ2
<

1

U

∣

∣

∣

∣

y

)

.

Here is a function that performs this computation

qinvgamma <- function(p, shape, scale = 1)

1/qgamma(1-p, shape = shape, rate = scale)
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Bayesian parameter estimation Posterior for the standard deviation

Posterior for the standard deviation, σ

The variance is hard to interpret because its units are squared relative to Yi. In contrast, the
standard deviation σ =

√
σ2 units are the same as Yi.

For credible intervals (or any quantile), we can compute the square root of the endpoints since

P (σ2 < c2) = P (σ < c).

Find the pdf through transformations of random variables. In R code,

dinvgamma <- function(x, shape, scale = 1)

dgamma(1/x, shape = shape, rate = scale)/x^2

dsqrtinvgamma = function(x, shape, scale)

dinvgamma(x^2, shape, scale)*2*x
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Yield data analysis

Yield data

Suppose we have a random sample of 9 Iowa farms and we obtain corn yield in bushels per
acre on those farms. Let Yi be the yield for farm i in bushels/acre and assume

Yi
ind∼ N(µ, σ2).

We are interested in making statements about µ and σ2.

yield_data <- read.csv("yield.csv")

nrow(yield_data)

[1] 9

yield_data

farm yield

1 farm1 153.5451

2 farm2 205.6999

3 farm3 178.7548

4 farm4 170.1692

5 farm5 224.7723

6 farm6 184.0806

7 farm7 169.8615

8 farm8 201.2721

9 farm9 181.6356
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Yield data analysis Histogram of yield

Histogram of yield
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Yield data analysis Calculate sufficient statistics

Calculate sufficient statistics

(n <- length(yield_data$yield))

[1] 9

(sample_mean <- mean(yield_data$yield))

[1] 185.5323

(sample_variance <- var(yield_data$yield))

[1] 470.2817

Use these sufficient statistics to calculate:

posterior densities

posterior means

credible intervals
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Yield data analysis Posterior densities

Posterior density for µ
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Yield data analysis Posterior densities

Posterior density for σ2
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Yield data analysis Posterior means

Posterior means

# Posterior mean of population yield mean, E[mu|y]

sample_mean

[1] 185.5323

Posterior mean for µ is E[µ|y] = 186 bushels/acre.

# Posterior mean of population yield variance

post_mean_var = (n-1)*sample_variance / (n-3)

post_mean_var

[1] 627.0422

Posterior mean for σ2 is E[σ2|y] = 627 (bushels/acre)2.
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Yield data analysis Credible intervals

Credible intervals

# 95% credible interval for the population mean

a = 0.05

mean_ci = sample_mean + c(-1,1) * qt(1-a/2, df = n-1) * sqrt(sample_variance/n)

mean_ci

[1] 168.8630 202.2017

So a 95% credible interval for µ is (169,202) bushels/acre.

# 95% credible interval for the population variance

var_ci = qinvgamma(c(a/2, 1-a/2),

shape = (n-1)/2,

scale = (n-1)*sample_variance/2)

var_ci

[1] 214.5623 1726.0175

So a 95% credible interval for σ2 is (215,1726) (bushels/acre)2.
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Yield data analysis Credible intervals

Posterior density for µ
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Yield data analysis Credible intervals

Posterior density for σ2
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Yield data analysis Credible intervals

Posterior for the standard deviation, σ

# Posterior median and 95% CI for population yield standard deviation

sd_median = sqrt(qinvgamma(.5, shape = (n-1)/2, scale = (n-1)*sample_variance/2))

sd_median

[1] 22.63362

So the posterior median for σ is 23 bushels/acre.

# Posterior 95% CI for the population yield standard deviation

sd_ci = sqrt(var_ci)

sd_ci

[1] 14.64795 41.54537

So a posterior 95% credible interval for σ is (15, 42) bushels/acre.
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Yield data analysis Credible intervals

Posterior for the standard deviation, σ
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Summary

Bayesian inference in a normal model

Prior: p(µ, σ2) = 1/σ2

Posterior:

µ|y ∼ tn−1(y, s
2/n) and σ2|y ∼ IG

(

n− 1

2
,
(n− 1)s2

2

)

# Sufficient statistics

n <- length(y)

sample_mean <- mean(y)

sample_variance <- var(y)

# Posterior expectations

sample_mean # mu

(n-1)*sample_variance / (n-3) # sigma^2

# Posterior medians

var_median <- qinvgamma(.5, shape = (n-1)/2, scale = (n-1)*sample_variance/2)

sd_median <- sqrt(var_median)

# Posterior credible intervals

sample_mean + c(-1,1) * qt(1-a/2, df = n-1) * sqrt(sample_variance/n)

var_ci <- qinvgamma(c(a/2,1-a/2), shape = (n-1)/2, scale = (n-1)*sample_variance/2)

sd_ci <- sqrt(var_ci)
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Sampling distribution

Sampling distribution

The sampling distribution of a statistic is the distribution of the statistic over different

realizations of the data.

Find the following sampling distributions:

If Yi
ind
∼ N(µ, σ2),

Y and
Y − µ

S/
√
n
.

If Y ∼ Bin(n, p),
Y

n
.
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Sampling distribution Normal model

Normal model

Let Yi
ind
∼ N(µ, σ2), then Y ∼ N(µ, σ2/n).
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Sampling distribution Normal model

Normal model

Let Yi
ind
∼ N(µ, σ2), then the t-statistic

T =
Y − µ

S/
√
n

∼ tn−1.
Warning: Returning more (or less) than 1 row per ‘summarise()‘ group was deprecated in dplyr 1.1.0.

i Please use ‘reframe()‘ instead.

i When switching from ‘summarise()‘ to ‘reframe()‘, remember that ‘reframe()‘ always returns an ungrouped data frame

and adjust accordingly.

Call ‘lifecycle::last lifecycle warnings()‘ to see where this warning was generated.
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Sampling distribution Binomial model

Binomial model

Let Y ∼ Bin(n, p), then

P

(

Y

n
= p

)

= P (Y = np), p = 0,
1

n
,
2

n
, . . . ,

n− 1

n
, 1.

p = 0.5 p = 0.8

n =
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n =
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Sampling distribution Approximate sampling distributions

Approximate sampling distributions

Recall that from the Central Limit Theorem (CLT):

S =

n
∑

i=1

Xi

·

∼ N(nµ, nσ2) and X = S/n
·

∼ N(µ, σ2/n)

for independent Xi with E[Xi] = µ and V ar[Xi] = σ2.
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Sampling distribution Approximate sampling distributions

Approximate sampling distribution for binomial proportion

If Y =
∑

n

i=1
Xi with Xi

ind
∼ Ber(p), then

Y

n

·

∼ N

(

p,
p[1− p]

n

)

.
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Sampling distribution Summary

Summary

Sampling distributions:

If Yi
ind
∼ N(µ, σ2),
Y ∼ N(µ, σ2/n) and
Y−µ
S/

√
n
∼ tn−1.

If Y ∼ Bin(n, p),
P
(

Y
n = p

)

= P (Y = np) and
Y
n

·

∼ N
(

p, p[1−p]
n

)

.

If Xi independent with E[Xi] = µ and V ar[Xi] = σ2, then

S =

n
∑

i=1

Xi
·

∼ N(nµ, nσ2)

and
X = S/n

·

∼ N(µ, σ2/n)

for n sufficiently large.
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Exact confidence intervals

Exact confidence intervals

The coverage of an interval estimator is the probability the interval will contain the true value
of the parameter when the data are considered to be random. If an interval estimator has
100(1− a)% coverage, then we call it a 100(1− a)% confidence interval and 1− a is the
confidence level.

That is, we calculate
1− a = P (L < θ < U)

where L and U are random because they depend on the data. Thus confidence is a statement
about the procedure.
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Exact confidence intervals Normal mean

Normal model

If Yi
ind∼ N(µ, σ2) and we assume the default prior p(µ, σ2) ∝ 1/σ2, then a 100(1− a)% credible

interval for µ is given by
y ± tn−1,a/2s/

√
n.

When the data are considered random

Tn−1 =
Y − µ

S/
√
n

∼ tn−1(0, 1)

thus the probability µ is within our credible interval is

P
(

Y − tn−1,a/2S/
√
n < µ < Y + tn−1,a/2S/

√
n
)

= P
(

−tn−1,a/2 < Y−µ
S/

√
n
< tn−1,a/2

)

= P
(

−tn−1,a/2 < Tn−1 < tn−1,a/2

)

= 1− a.

Thus, this 100(1− a)% credible interval is also a 100(1− a)% confidence interval.
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Exact confidence intervals Yield data example

Yield data example

Recall the corn yield example from I04 with 9 randomly selected fields in Iowa whose sample
average yield is 186 and sample standard deviation is 22. Then a 95% confidence interval for
the mean corn yield on Iowa farms is

186± 2.31× 22/
√
9 = (169, 202).
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Approximate confidence intervals Standard error

Standard error

The standard error of an estimator is an estimate of the standard deviation of the estimator
(when the data are considered random).

If Y ∼ Bin(n, θ), then

θ̂ =
Y

n
has SE[θ̂] =

√

θ̂(1− θ̂)

n
.

If Yi
ind∼ N(µ, σ2), then

µ̂ = Y has SE[µ̂] = S/
√
n.
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Approximate confidence intervals Approximate confidence intervals

Approximate confidence intervals

If an unbiased estimator has an asymptotic normal distribution, then we can construct an approximate
100(1− a)% confidence interval for E[θ̂] = θ using

θ̂ ± za/2SE[θ̂].

where SE[θ̂] is the standard error of the estimator and P (Z > za/2) = a/2.

This comes from the fact that if θ̂
·∼ N(θ, SE[θ̂]2), then

P
(

θ̂ − za/2SE(θ̂) < θ < θ̂ + za/2SE(θ̂)
)

= P
(

−za/2 < θ̂−θ
SE(θ̂)

< za/2

)

≈ P
(

−za/2 < Z < za/2
)

= 1− a.
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Approximate confidence intervals Normal mean

Normal example

If Yi
ind∼ N(µ, σ2) and we have the estimator µ̂ = Y , then

E[µ̂] = µ and SE[µ̂] = S/
√
n

Thus an approximate 100(1− a)% confidence interval for µ = E[µ̂] is

µ̂± za/2SE[µ̂] = Y ± za/2S/
√
n.

Note that this is almost identical to the exact 100(1− a)% confidence interval for µ,

Y ± tn−1,a/2S/
√
n

and when n is large za/2 ≈ tn−1,a/2.
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Approximate confidence intervals Critical values

T critical values vs Z critical values
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Approximate confidence intervals Binomial proportion

Approximate confidence interval for binomial proportion

If Y ∼ Bin(n, θ), then an approximate 100(1− a)% confidence interval for θ is

θ̂ ± za/2

√

θ̂(1− θ̂)

n
.

where θ̂ = Y/n since

E[θ̂] = E

[

Y

n

]

= θ

and

SE[θ̂] =

√

θ̂(1− θ̂)

n
.
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Approximate confidence intervals Gallup poll example

Gallup poll example

In a Gallup poll dated 2017/02/19, 32.1% of respondents of the 1,500 randomly selected U.S.
adults indicated that they were “engaged at work”. Thus an approximate 95% confidence
interval for the proportion of all U.S. adults is

0.321± 1.96×
√

.321(1− .321)

1500
= (0.30, 0.34).
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Summary

Confidence interval summary

Model Parameter Estimator Confidence Interval Type

Yi
ind∼ N(µ, σ2) µ µ̂ = y µ̂± tn−1,a/2s/

√
n exact

Yi
ind∼ N(µ, σ2) µ µ̂ = y µ̂± za/2s/

√
n approximate

Y ∼ Bin(n, θ) θ θ̂ = y/n θ̂ ± za/2

√

θ̂(1− θ̂)/n approximate

Yi
ind∼ Ber(θ) θ θ̂ = y θ̂ ± za/2

√

θ̂(1− θ̂)/n approximate

The Bayesian credible intervals we discuss provide approximate confidence intervals. For example, for
binomial data the following is an approximate confidence interval:

qbeta(c(a/2, 1-a/2), 1 + y, 1 + n - y)

Approximate means that the coverage will get closer to the desired probability, i.e. 100(1− a)%, as the
sample size gets larger.
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Statistical hypotheses

Statistical hypothesis

A statistical hypothesis is a model for data.

For example,

Y ∼ Ber(θ)

or

Y ∼ Bin(10, 0.25)

or

Yi
ind
∼ N(0, σ2)

or

Yi
ind
∼ N(µ, σ2).
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Statistical hypotheses Translating a scientific hypothesis into a statistical hypothesis

Translating a scientific hypothesis into a statistical hypothesis

Scientific hypothesis: the coin is fair

Statistical hypothesis:

Let Y be an indicator that the coin is flipped heads.

Y ∼ Ber(0.5)

Scientific hypothesis: the coin is biased, but we don’t

know the probability

Statistical hypothesis:

Y ∼ Ber(θ).
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Statistical hypotheses Null hypothesis

Null hypothesis

Wikipedia definition:

the null hypothesis, H0, is the [model] that there is no relationship between two
measured phenomena or no association among groups

My definition:

the null hypothesis is the straw man model that nobody believes is true

For example, the coin is fair

H0 : Y ∼ Ber(0.5).
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Statistical hypotheses Alternative hypothesis

Alternative hypothesis

Wikipedia definition:

the alternative hypothesis, HA, is [the model] that states something is happening, a
new theory is preferred instead of an old one (null hypothesis).

My definition:

the alternative hypothesis is the model that the researcher believes

For example, the coin is biased, but we don’t know the

probability

HA : Y ∼ Ber(θ)
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Statistical hypotheses Null vs alternative hypothesis

Null vs alternative hypothesis

We typically simplify notation and write null and alternative hypotheses like this:

Model:

Y ∼ Ber(θ)

Hypotheses:

H0 : θ = 0.5 versus HA : θ ̸= 0.5

I prefer

H0 : Y ∼ Ber(0.5) versus HA : Y ∼ Ber(θ)

so that we remind ourselves that these hypotheses are

models.
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Bayesian hypotheses

Bayesian hypotheses

Bayesian hypotheses are full probability models for the data.

For example,

Y ∼ Ber(0.5)

or

Y |θ ∼ Ber(θ) and θ ∼ Be(a, b)

for known values of a and b.
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Bayesian hypotheses

Prior predictive distribution

The prior predictive distribution is the distribution for the data with all the parameters integrated out,

i.e.

p(y) =

∫
p(y|θ)p(θ)dθ.

For example, if

Y |θ ∼ Ber(θ) and θ ∼ Be(a, b)

then

p(y) =
∫
p(y|θ)p(θ)dθ

=
∫ 1

0
yθ(1− y)1−θ 1

Beta(a,b)θ
a−1(1− θ)b−1dθ

= 1
Beta(a,b)

∫ 1

0
θa+y−1(1− θ)b+n−y−1dθ

= Beta(a+y,b+n−y)
Beta(a,b)

which is the probability mass function for the beta-binomial

distribution.
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Bayesian hypotheses Comments

Comments

Three points about Bayesian hypotheses:

Must use proper priors.

No special hypotheses.

Not restricted to 2 hypotheses.
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Summary

Summary

Model:

Y ∼ Ber(θ)

Null hypothesis:

H0 : θ = 0.5

Alternative hypothesis:

HA : θ ̸= 0.5
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p-values

p-value

A p-value is the probability of observing a statistic as or more extreme than observed if the

hypothesis is true.

A p-value is the probability of observing a statistic as or more extreme than the one you

observed if the model is true when the data are considered random.
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p-values Binomial model

Binomial model

Let H0 : Y ∼ Bin(13, 0.5) and observe y = 3.

Choose

the statistics is the number of successes Y ,

the observed value is 3,

its sampling distribution when the model is true is Y ∼ Bin(13, 0.5), and

there are three as or more extreme regions:

Y ≤ 3
Y ≥ 3
|Y − 13 · 0.5| ≥ |3− 13 · 0.5|
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p-values Binomial model as or more extreme regions

as or more extreme regions
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p-values Binomial model p-value calculation

R Calculation

One-sided p-values:

P (Y ≤ y):

pbinom(y, size = n, prob = p)

[1] 0.04614258

P (Y ≥ y) = 1− P (Y < y) = 1− P (Y ≤ y − 1):

1 - pbinom(y - 1, size = n, prob = p)

[1] 0.9887695

Two-sided p-value:
P (|Y − nθ| ≥ |y − nθ|) = 2P (Y ≤ y)

2 * pbinom(y, size = n, prob = p)

[1] 0.09228516
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p-values Normal model

Normal model

Let H0 : Yi ∼ N(3, 42) for i = 1, . . . , 6 and you observe y = 6.3, s = 4.1, and

t =
y − 3

s/
√
n
=

6.3− 3

4.1/
√
6
= 1.97.

Choose

t-statistic,

observed t = 1.97,

its sampling distribution when the model is true is T5 ∼ t5, and

there are three as or more extreme regions:

T5 ≤ 1.97
T5 ≥ 1.97
|T5| ≥ |1.97|
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p-values Normal model as or more extreme regions

as or more extreme regions
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p-values Normal model R calculation

R Calculation
One-sided p-values:

P (T5 ≤ t):

pt(t, df = n-1)

[1] 0.9471422

P (T5 ≥ t) = 1− P (T5 < t) = 1− P (T5 ≤ t):

1 - pt(t, df = n-1)

[1] 0.05285775

Two-sided p-value:
P (|T5| ≥ |t|) = 2P (T5 ≥ t)

2 * (1 - pt(t, df = n-1))

[1] 0.1057155
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p-values Interpretation

Interpretation

Small p-values provide evidence that the data are incompatible with the model.

Recall

Yi
ind∼ N(µ, σ2)

indicates the data

are independent,

are normally distributed,

have a common mean, and

have a common variance.

Y ∼ Bin(n, θ)

indicates

each trial is independent and

each trial has probability of

success θ.
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p-values Summary

Summary

p-value: the probability of observing a statistic as or more extreme than observed if the

model is true

small p-values provide evidence that the data are incompatible with the model
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Statistical hypothesis testing

Statistical hypothesis testing

A hypothesis test consists of two hypotheses,

null hypothesis (H0) and

an alternative hypothesis (HA),

which make claims about parameter(s) in a model, and a decision to either

reject the null hypothesis or

fail to reject the null hypothesis.
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Statistical hypothesis testing Binomial model

Binomial model

If Y ∼ Bin(n, θ), then some hypothesis tests are

H0 : θ = θ0 versus HA : θ ̸= θ0

or
H0 : θ = θ0 versus HA : θ > θ0

or
H0 : θ = θ0 versus HA : θ < θ0
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Statistical hypothesis testing Small data

Small data

Let Y ∼ Bin(n, θ) with

H0 : θ = 0.5 versus HA : θ ̸= 0.5.

You collect data and observe y = 6 out of n = 13 attempts. Should you reject H0? Probably
not since 6 ≈ E[Y ] = 6.5 if H0 is true.

What if you observed y = 2? Well, P (Y = 2) ≈ 0.01.
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Statistical hypothesis testing Small data

Large data

Let Y ∼ Bin(n, θ) with

H0 : θ = 0.5 versus HA : θ ̸= 0.5.

You collect data and observe y = 6500 out of n = 13000 attempts. Should you reject H0?
Probably not since 6500 = E[Y ] if H0 is true. But P (Y = 6500) ≈ 0.007.
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Statistical hypothesis testing p-values

p-values

p-value: the probability of observing a test statistic as or more extreme than observed if the
null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if Y ∼ Bin(n, θ) and H0 : θ = θ0 then

HA : θ < θ0 =⇒ Y ≤ y

or
HA : θ > θ0 =⇒ Y ≥ y

or
HA : θ ̸= θ0 =⇒ |Y − nθ0| ≥ |y − nθ0|.
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Statistical hypothesis testing Binomial model as or more extreme regions

as or more extreme regions
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As or more extreme regions for Y ~ Bin(13,0.5) with y = 2
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Statistical hypothesis testing Binomial model p-value calculation

R “hand” calculation

HA : θ < 0.5 =⇒ p-value = P (Y ≤ y)
pbinom(y, size = n, prob = theta0)

[1] 0.01123047

HA : θ > 0.5 =⇒ p-value = P (Y ≥ y) = 1− P (Y ≤ y − 1)

1-pbinom(y-1, size = n, prob = theta0)

[1] 0.998291

HA : θ ̸= 0.5 =⇒ p-value = P (|Y − nθ0| ≤ |y − nθ0|)
2*pbinom(y, size = n, prob = theta0)

[1] 0.02246094
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Statistical hypothesis testing Binomial model p-value calculation

R Calculation

HA : θ < 0.5

binom.test(y, n, p = theta0, alternative = "less")$p.value

[1] 0.01123047

HA : θ > 0.5

binom.test(y, n, p = theta0, alternative = "greater")$p.value

[1] 0.998291

HA : θ ̸= 0.5

binom.test(y, n, p = theta0, alternative = "two.sided")$p.value

[1] 0.02246094
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Statistical hypothesis testing Significance level

Significance level

Make a decision to either

reject the null hypothesis or

fail to reject the null hypothesis.

Select a significance level a and

reject if p-value < a otherwise

fail to reject.

(STAT587@ISU) I06a - Hypothesis tests October 18, 2024 10 / 14



Statistical hypothesis testing Decisions

Decisions

Truth
Decision H0 true H0 not true

reject H0 type I error correct
fail to reject H0 correct type II error

Then

significance level a is P (reject H0|H0 true)

and

power is P (reject H0|H0 not true).
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Statistical hypothesis testing Interpretation

Interpretation

The null hypothesis is a model. For example,

H0 : Y ∼ Bin(n, θ0)

if we reject H0, then we are saying the data are incompatible with this model.

Recall that Y =
∑

n

i=1
Xi for Xi

ind
∼ Ber(θ).

So, possibly

the Xi are not independent or

they don’t have a common θ or

θ ̸= θ0 or

you just got unlucky.

If we fail to reject H0, insufficient evidence to say that the data are incompatible with this
model.
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Statistical hypothesis testing Die tossing example

Die tossing example

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your
friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume Y ∼ Bin(6, θ). You observed y = 3 and are testing

H0 : θ =
1

6
versus HA : θ >

1

6
.

binom.test(3, 6, p = 1/6, alternative = "greater")$p.value

[1] 0.06228567

With a signficance level of a = 0.05, you fail to reject the null hypothesis.
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Statistical hypothesis testing Summary

Summary

Hypothesis tests:
H0 : θ = θ0 versus HA : θ ̸= θ0

Use p-values to determine whether to

reject the null hypothesis or
fail to reject the null hypothesis.

More assessment is required to determine if other model assumptions hold.
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p-values and confidence intervals

p-values and confidence intervals

From the ASA statement on p-values:

a p-value is the probability under a specified statistical model that a statistical summary

of the data would be equal to or more extreme than its observed value.

A 100(1− a)% confidence interval contains the true value of the parameter in 100(1− a)% of
the intervals constructed using the procedure.

Both are based on the sampling distribution.

Let H0 : θ = θ0,

if p-value < a, then 100(1− a)% CI will not
contain θ0 but

if p-value > a, then 100(1−a)% CI will contain θ0.

(STAT5870@ISU) I06b - Correspondence between p-values and confidence intervals November 22, 2024 2 / 7



p-values and confidence intervals Examples

Normal model

Let Yi
ind
∼ N(µ, σ2) with H0 : µ = µ0 = 1.5.

y = rnorm(10, mean = 3, sd = 1.5)

a = 0.05

t = t.test(y, mu = mu0, conf.level = 1-a)

t$p.value

[1] 0.003684087

round(as.numeric(t$conf.int),2)

[1] 2.26 4.37

a = 0.001

t = t.test(y, mu = mu0, conf.level = 1-a)

t$p.value

[1] 0.003684087

round(as.numeric(t$conf.int),2)

[1] 1.08 5.55
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p-values and confidence intervals Explanation

Explanation

Values for µ0 that fail to reject H0 at significance level a are precisely the 100(1− a)%
confidence interval.
a = 0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17
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p-values and confidence intervals Explanation

Explanation

Values for µ0 that fail to reject H0 at significance level a are precisely the 100(1− a)%
confidence interval.
a = 0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17
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Hypothesis tests with various null hypothesis values
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p-values and confidence intervals Explanation

Explanation

Values for µ0 that fail to reject H0 at significance level a are precisely the 100(1− a)%
confidence interval.
a = 0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17
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p-values and confidence intervals Importance

Importance

The population mean was significantly different than 1.5 (p = 0.004).

A 90% confidence interval for the population mean was (2.46, 4.17).

From the second statement, you know

the p-value is less than 0.1 for any value outside
the interval,

a range of reasonable values for the population
mean is given by the interval, and

a measure of uncertainty given by the interval
width and confidence level.
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Statistical hypothesis testing

Statistical hypothesis testing

A hypothesis test consists of two hypotheses:

null hypothesis (H0) and

an alternative hypothesis (HA)

which make a claim about parameters in a model and a decision to either

reject the null hypothesis or

fail to reject the null hypothesis.
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Statistical hypothesis testing t-tests

t-tests

If Yi
ind∼ N(µ, σ2), then typical hypotheses about the mean are

H0 : µ = µ0 versus HA : µ ̸= µ0

or
H0 : µ = µ0 versus HA : µ > µ0

or
H0 : µ = µ0 versus HA : µ < µ0
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Statistical hypothesis testing t-statistic

t-statistic

Then

t =
y − µ0

s/
√
n

has a tn−1 distribution when H0 is true.
The as or more extreme region is determined by the alternative hypothesis.

HA : µ < µ0 =⇒ T ≤ t

or
HA : µ > µ0 =⇒ T ≥ t

or
HA : µ ̸= µ0 =⇒ |T | ≥ |t|

where T ∼ tn−1.
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Statistical hypothesis testing Example data

Example data

Suppose we assume Yi
ind∼ N(µ, σ2) with H0 : µ = 3 and we observe

n = 6, y = 6.3, and s = 4.1.

Then we can calculate
t = 1.97

which has a t5 distribution if the null hypothesis is true.
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Statistical hypothesis testing Normal model as or more extreme regions

as or more extreme regions
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Statistical hypothesis testing Normal model as or more extreme regions

R Calculation

HA : µ < 3
t.test(y, mu = mu0, alternative = "less")$p.value

[1] 0.9461974

HA : µ > 3
t.test(y, mu = mu0, alternative = "greater")$p.value

[1] 0.05380256

HA : µ ̸= 3
t.test(y, mu = mu0, alternative = "two.sided")$p.value

[1] 0.1076051
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Statistical hypothesis testing Interpretation

Interpretation

The null hypothesis is a model. For example,

H0 : Yi
ind∼ N(µ0, σ

2)

if we reject H0, then we are saying the data are incompatible with this model.
So, possibly

the Yi are not independent or

they don’t have a common σ2 or

they aren’t normally distributed or

µ ̸= µ0 or

you got unlucky.

If you fail to reject H0,then there is insufficient
evidence to say that the data are incompatible with the
null model.
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Statistical hypothesis testing Quality control example

Quality control example

An I-beam manufacturing facility has a design specification for I-beam thickness of 12 millimeters.
During manufacturing a random sample of I-beams are taken from the line and their thickness is
measured.

y

[1] 12.04 11.98 11.97 12.12 11.90 12.05 12.14 12.13 12.18 12.23 12.03 12.03

t.test(y, mu = 12)

One Sample t-test

data: y

t = 2.4213, df = 11, p-value = 0.03393

alternative hypothesis: true mean is not equal to 12

95 percent confidence interval:

12.00607 12.12727

sample estimates:

mean of x

12.06667

The small p-value suggests the data may be incompatible

with the model Yi

ind∼ N(12, σ2).(STAT5870@ISU) I06c - t-tests November 22, 2024 9 / 10



Statistical hypothesis testing Summary

Summary

t-test, Yi
ind∼ N(µ, σ2):

H0 : µ = µ0 versus HA : µ ̸= µ0

Use p-values to determine whether to

reject the null hypothesis or
fail to reject the null hypothesis.

More assessment is required to determine if other
model assumptions hold.
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Posterior model probabilities One-sided alternative hypotheses

One-sided alternative hypotheses

For “one-sided alternative hypotheses” just calculate posterior probabilities.

For example, with hypotheses

H0 : θ ≤ θ0 versus HA : θ > θ0

Calculate
p(H0|y) = P (θ ≤ θ0|y)

and
p(HA|y) = P (θ > θ0|y).
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Posterior model probabilities One-sided alternative hypotheses

Posterior probabilities

Let Y ∼ Bin(n, θ) with hypotheses

H0 : θ ≤ 0.5 and HA : θ > 0.5.

Assume θ ∼ Unif(0, 1) and obtain the posterior i.e.

θ|y ∼ Be(1 + y, 1 + n− y).

Then calculate

p(H0|y) = P (θ ≤ 0.5|y) = 1− p(HA|y).

n = 10

y = 3

probH0 = pbeta(0.5, 1+y, 1+n-y)

probH0 # p(H_0|y)

[1] 0.8867188

1-probH0 # p(H_A|y)
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Posterior model probabilities Posterior model probabilities

Posterior model probabilities

Calculate the posterior model probabilities over some set of J models i.e,

p(Mj |y) =
p(y|Mj)p(Mj)

p(y)
=

p(y|Mj)p(Mj)
∑J

k=1
p(y|Mk)p(Mk)

.

In order to accomplish this, we need to determine

prior model probabilities:

p(Mj) for all j = 1, . . . , J

and

priors over parameters in each model:

p(y|Mj) =

∫

p(y|θ)p(θ|Mj)dθ.
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Posterior model probabilities Prior predictive distribution

Prior predictive distribution

The prior predictive distribution for model Mj is

p(y|Mj) =

∫

p(y|θ)p(θ|Mj)dθ.

For example, let

y|µ,Mj ∼ N(µ, 1)

and
µ|Mj ∼ N(0, C),

then
y|Mj ∼ N(0, 1 + C).
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Posterior model probabilities Bayes Factor

Bayes Factor

In the context of a null hypothesis (H0) and an alternative hypothesis (HA) we have

p(H0|y) = p(y|H0)p(H0)
p(y|H0)p(H0)+p(y|HA)p(HA)

=
[

1 + p(y|HA)
p(y|H0)

p(HA)
p(H0)

]−1

=
[

1 +BF (HA : H0)
p(HA)
p(H0)

]−1

where

BF (HA : H0) =
p(y|HA)

p(y|H0)

is the Bayes Factor for HA over H0.
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Posterior model probabilities Normal model

Normal model

Let Y ∼ N(µ, 1) and H0 : µ = 0 vs HA : µ ̸= 0.

Assume p(H0) = p(HA) and µ|HA ∼ N(0, 1),
then

y|H0 ∼ N(0, 1)
y|HA ∼ N(0, 2).

y = 0.3

probH0 = 1/(1+dnorm(y, 0, sqrt(2))/dnorm(y, 0, 1))

probH0 # p(H_0|y)

[1] 0.5803167

1-probH0 # p(H_A|y)

[1] 0.4196833
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Posterior model probabilities Normal model

Ratio of predictive densities
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Posterior model probabilities Normal model

Normal model
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Posterior model probabilities Prior impact

Prior impact

Let Y ∼ N(µ, 1) and H0 : µ = 0 vs HA : µ ̸= 0.

Assume p(H0) = p(HA) and µ|HA ∼ N(0, C),
then

y|H0 ∼ N(0, 1)
y|HA ∼ N(0, 1 + C)

and

p(H0|y) =

[

1 +
p(y|HA)

p(y|H0)

]−1

.
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Posterior model probabilities Prior impact

Prior impact
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Posterior model probabilities Prior impact

Interpretation

Since posterior model probabilities depend on the prior predictive distribution

p(y|Mj) =

∫

p(y|θ)p(θ|Mj)dθ

posterior model probabilities tell you which model does a better job of prediction and priors,
p(θ|Mj), must be informative.
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Posterior model probabilities Prior impact

Do pvalues and posterior probabilities agree?

Suppose Y ∼ Bin(n, θ) and we have the hypotheses H0 : θ = 0.5 and HA : θ ̸= 0.5 We
observe n = 10, 000 and y = 4, 900 and find the p-valueis

p-value ≈ 2P (Y ≤ 4900) = 0.0466

so we would reject H0 at the 0.05 level.

If we assume p(H0) = p(HA) = 0.5 and θ|HA ∼ Unif(0, 1), then the posterior probability of
H0, is

p(H0|y) ≈
1

1 + 1/10.8
= 0.96,

so the probability of H0 being true is 96%.

It appears the posterior probability of H0 and p-value
completely disagree!
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Posterior model probabilities Jeffreys-Lindley Paradox

Jeffreys-Lindley Paradox

The Jeffreys-Lindley Paradox concerns a situation when comparing two hypotheses H0 and H1

given data y and find

a frequentist test result is significant leading to rejection of H0, but

the posterior probability of H0 is high.

This can happen when

the effect size is small,

n is large,

H0 is relatively precise,

H1 is relative diffuse, and

the prior model odds is ≈ 1.
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Posterior model probabilities Jeffreys-Lindley Paradox

No real paradox

p-values:

a p-value measure how incompatible your data are with the null hypothesis, but

it says nothing about how incompatible your data are with the alternative hypothesis.

Posterior model probabilities are

a measure of the (prior) predictive ability of a model
relative to the other models, but

this requires you to have at least two (or more)
well-thought out models with informative priors.

Thus, these two statistics provide completely different
measures of model adequecy.
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Posterior model probabilities Summary

Summary

Use posterior probabilities for one-sided alternative hypotheses.

Posterior model probabilities evaluate relative predictive ability.
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Comparing probabilities One probability

One probability

Consider the model Y ∼ Bin(n, θ).

We have discussed a number of statistical procedures to draw inferences about θ:

Frequentist: based on (asymptotic) distribution of Y/n

p-value for test of H0 : Y ∼ Bin(n, θ0),
confidence interval for θ,

Bayesian: based on posterior for θ

credible interval for θ,
posterior model probability, e.g. p(H0|y), and
posterior probability statements, e.g. P (θ < θ0|y).

(STAT5870@ISU) I08 - Comparing probabilities November 22, 2024 2 / 19



Comparing probabilities One probability - Frequentist Analysis

One probability - Frequentist Analysis

###################### Binomial analysis ######################

# Y ~ Bin(n, theta)

## Data

n <- 13

y <- 9

## Frequentist

bt <- binom.test(y, n)

bt$p.value # H_0: Y ~ Bin(n, 0.5)

[1] 0.2668457

bt$conf.int # 95% Confidence interval for theta

[1] 0.3857383 0.9090796

attr(,"conf.level")

[1] 0.95
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Comparing probabilities One probability - Bayesian Analysis

One probability - Bayesian Analysis

## Bayesian

(1 + y) / (2 + n) # Posterior mean

[1] 0.6666667

qbeta(0.5, 1 + y, 1 + n - y) # Posterior median

[1] 0.6742488

qbeta(c(.025, .975), 1 + y, 1 + n - y) # 95% Credible interval for theta

[1] 0.4189647 0.8724016

pbeta(0.4, 1 + y, 1 + n - y) # P(theta < 0.4 | y)

[1] 0.01750954
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Comparing probabilities One probability - Bayesian Analysis via Monte Carlo

One probability - Bayesian Analysis via Monte Carlo

## Bayesian via Monte Carlo

theta <- rbeta(10000, 1 + y, 1 + n - y) # Simulate theta from posterior

mean(theta) # Estimated posterior mean

[1] 0.6675438

quantile(theta, probs = 0.5) # Estimated posterior median

50%

0.6761934

quantile(theta, probs = c(0.025, 0.975)) # Estimated 95% credible interval for theta

2.5% 97.5%

0.4179386 0.8762730

mean(theta < 0.4) # Estimated P(theta < 0.5 | y)

[1] 0.0168
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Comparing probabilities Two probabilities

Two probabilities

Consider the model
Yg

ind
∼ Bin(ng, θg)

for g = 1, 2 and you are interested in the relationship between θ1 and θ2.

Frequentist: based on asymptotic distribution of Y1

n1
− Y2

n2
:

p-value for a hypothesis test, e.g. H0 : θ1 = θ2,
confidence interval for θ1 − θ2,

Bayesian: based on posterior distribution of θ1 − θ2:

credible interval for θ1, θ2,
posterior model probability, e.g. p(H0|y), and
probability statements, e.g. P (θ1 < θ2|y).

where y = (y1, y2).
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Comparing probabilities Two probabilities

Data example

Suppose you have two manufacturing processes and you are interested in which process has
the larger probability of being within the specifications.

So you run the two processes and record the number of successful products produced:

Process 1: 135 successful products out of 140 attempts

Process 2: 216 successful products out of 230 attempts

In R, you can code this as two vectors:

successes = c(135,216)

attempts = c(140,230)

or, better yet, as a data.frame:

d = data.frame(process = factor(1:2),

successes = successes,

attempts = attempts)
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Comparing probabilities Two probabilities

Frequentist Analysis

p-value for H0 : Yg
ind
∼ Bin(ng, θ)

equal-tail confidence interval for θ1 − θ2

(pt <- prop.test(d$successes, d$attempts)) # cannot use binom.test

2-sample test for equality of proportions with continuity correction

data: d$successes out of d$attempts

X-squared = 0.67305, df = 1, p-value = 0.412

alternative hypothesis: two.sided

95 percent confidence interval:

-0.02417591 0.07448647

sample estimates:

prop 1 prop 2

0.9642857 0.9391304

pt$p.value

[1] 0.4119914

pt$conf.int

[1] -0.02417591 0.07448647

attr(,"conf.level")

[1] 0.95
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Comparing probabilities Two probabilities

Bayesian analysis

Assume
Yg

ind
∼ Bin(ng, θg)

and
θg

ind
∼ Be(1, 1).

Then the posterior is

θg|y
ind
∼ Be(1 + yg, 1 + ng − yg).

From this we can compute

P (θ1 < θ2|y) = P (θ1 − θ2 < 0|y)

and a credible interval for θ1 − θ2 by simulating values from the posterior and computing
θ1 − θ2.
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Comparing probabilities Two probabilities

Posteriors
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Comparing probabilities Two probabilities

Credible interval for the difference

To obtain statistical inference on the difference, we draw samples from the posterior and then
calculate the difference:

n <- 1e5

theta1 <- rbeta(n, 1 + d$success[1], 1 + d$attempts[1] - d$success[1])

theta2 <- rbeta(n, 1 + d$success[2], 1 + d$attempts[2] - d$success[2])

diff <- theta1 - theta2

# Bayes estimate for the difference

mean(diff)

[1] 0.02239541

# Estimated 95% equal-tail credible interval

quantile(diff, c(.025,.975))

2.5% 97.5%

-0.02496668 0.06715340

# Estimate of the probability that theta1 is less than theta2

mean(diff < 0)

[1] 0.16199
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Comparing probabilities Multiple probabilities

Multiple probabilities

Now, let’s consider the more general problem of

Yg
ind
∼ Bin(ng, θg)

for g = 1, 2, . . . , G and you are interested in the relationship amongst the θg.

We can perform the following statistical procedures:

Frequentist: based on distribution of Y1, . . . , YG

p-value for test of H0 : θg = θ for all g,
p-value for test of H0 : θg = θg′ ,
confidence interval for θg − θg′ ,

Bayesian: based on posterior for θ1, . . . , θG:

credible interval for θg − θg′ ,
posterior model probability, e.g. p(H0|y), and
probability statements, e.g. P (θg < θg′ |y).

where g and ′g represent different values.
(STAT5870@ISU) I08 - Comparing probabilities November 22, 2024 12 / 19



Comparing probabilities Multiple probabilities

Data example

Suppose you have three manufacturing processes and you are interested in which process has
the larger probability of being within the specifications.

So you run the three processes and record the number of successful products produced:

Process 1: 135 successful products out of 140 attempts

Process 2: 216 successful products out of 230 attempts

Process 3: 10 successful products out of 10 attempts
In R, you can code this as two vectors:

successes = c(135,216,10)

attempts = c(140,230,10)

or, better yet, as a data.frame:

d = data.frame(process = factor(1:3),

successes = successes,

attempts = attempts)
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Comparing probabilities Multiple probabilities

p-values

The default hypothesis test is

H0 : θg = θ for all g versus HA : θg ̸= θg′ for some g, g′

prop.test(d$successes, d$attempts)

Warning in prop.test(d$successes, d$attempts): Chi-squared approximation may be incorrect

3-sample test for equality of proportions without continuity correction

data: d$successes out of d$attempts

X-squared = 1.6999, df = 2, p-value = 0.4274

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3

0.9642857 0.9391304 1.0000000
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Comparing probabilities Multiple probabilities

Confidence intervals

Confidence interval for θ1 − θ3:

# Need to specify a comparison to get confidence intervals of the difference

prop.test(d$successes[c(1,3)], d$attempts[c(1,3)])$conf.int

Warning in prop.test(d$successes[c(1, 3)], d$attempts[c(1, 3)]): Chi-squared approximation may be incorrect

[1] -0.10216886 0.03074029

attr(,"conf.level")

[1] 0.95
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Comparing probabilities Multiple probabilities

An alternative test

An alternative test for equality amongst the proportions uses chisq.test().

d$failures <- d$attempts - d$successes

chisq.test(d[c("successes","failures")])

Warning in chisq.test(d[c("successes", "failures")]): Chi-squared approximation may be incorrect

Pearson's Chi-squared test

data: d[c("successes", "failures")]

X-squared = 1.6999, df = 2, p-value = 0.4274

chisq.test(d[c("successes","failures")], simulate.p.value = TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: d[c("successes", "failures")]

X-squared = 1.6999, df = NA, p-value = 0.4103
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Comparing probabilities Multiple probabilities
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Comparing probabilities Multiple probabilities

Credible interval for differences

To compare the probabilities, we draw samples from the posterior and compare them.

posterior_samples <- function(d) {
data.frame(

rep = 1:1e5,

name = paste0("theta", d$process),

theta = rbeta(1e5, 1+d$successes, 1+d$attempts-d$successes),

stringsAsFactors = FALSE)

}

draws <- d |> group_by(process) |> do(posterior_samples(.)) |> ungroup() |>

select(-process) |> tidyr::spread(name, theta)

# Estimate of the comparison probabilities

draws |>

summarize(`P(theta1>theta2|y)` = mean(draws$theta1 > draws$theta2),

`P(theta1>theta3|y)` = mean(draws$theta1 > draws$theta3),

`P(theta2>theta3|y)` = mean(draws$theta2 > draws$theta3)) |>

gather(comparison, probability)

# A tibble: 3 x 2

comparison probability

<chr> <dbl>

1 P(theta1>theta2|y) 0.839

2 P(theta1>theta3|y) 0.633

3 P(theta2>theta3|y) 0.486

(STAT5870@ISU) I08 - Comparing probabilities November 22, 2024 18 / 19



Comparing probabilities Summary

Summary

Multiple (independent) binomial proportions

p-values

confidence intervals

posterior densities

credible intervals

posterior probabilities
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One mean summary One mean

One mean

Consider the model Yi
ind∼ N(µ, σ2). We have discussed a number of statistical procedures to

draw inferences about µ:

Frequentist: based on distribution of Y−µ
S/

√
n
∼ tn−1

p-value for a hypothesis test, e.g. H0 : µ = m,
confidence interval for µ,

Bayesian: µ−y
s/

√
n
∼ tn−1

credible interval for µ,
posterior model probability, e.g. p(H0|y), and
posterior probabilities, e.g. P (µ < m|y).

Now, we will consider what happens when you have multiple groups.
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Comparing two means Normal model

Two means

Consider the model

Yg,i
ind
∼ N(µg, σ

2)

for g = 1, 2 and i = 1, . . . , ng. and you are interested in the relationship between µ1 and µ2.

Frequentist: based on distribution of

Y 1 − Y 2 − (µ1 − µ2)

Sp

√

1

n1

+ 1

n2

∼ tn1+n2−2 where S
2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

p-value for a hypothesis test, e.g. H0 : µ1 − µ2 = d,
confidence interval for µ1 − µ2,

Bayesian
µ1 − µ2 − (y1 + y2)

sp

√

1

n1

+ 1

n2

∼ tn1+n2−2

credible interval for µ1 − µ2,
probability statements, e.g. P (µ1 − µ2 < d|y).

where y = (y1,1, . . . , y1,n1
, y2,1, . . . , y2,n2

).

Approaches are slightly different if you assume σ = σ for all groups.
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Comparing two means Normal model

Data example

Suppose you have two manufacturing processes to produce sensors and you are interested in
the average sensitivity of the sensors.

So you run the two processes and record the sensitivity of each sensor in units of mV/V/mm
Hg (http://www.ni.com/white-paper/14860/en/) and you observe the following summary
statistics:

# A tibble: 2 x 4

process n mean sd

<chr> <int> <dbl> <dbl>

1 P1 22 7.74 1.87

2 P2 34 9.24 2.26

Let Yg,i be the sensitivity of the ith sensor in the gth group. Assume

Yg,i
ind∼ N(µg, σ

2).

(STAT5870@ISU) I09 - Comparing means November 22, 2024 4 / 27

http://www.ni.com/white-paper/14860/en/


Comparing two means Normal model

Frequentist analysis formulas

Consider the hypothesis H0 : µ1 = µ2 or, equivalently, H0 : µ1 − µ2 = 0. We calculate the
p-value using

2P (Tn1+n2−1 < −|t|) where t =
y1 − y2 − 0

sp

√

1
n1

+ 1
n2

.

We calculate a 100(1− a)% confidence interval using

y1 − y2 ± tn1+n2−2,1−a/2sp

√

1

n1
+

1

n2
.
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Comparing two means Normal model

Frequentist analysis by hand

v <- sm$n[1] + sm$n[2] - 2

diff <- sm$mean[1] - sm$mean[2]

# Calculate standard error

sp2 <- ( (sm$n[1]-1)*sm$sd[1]^2 + (sm$n[2]-1)*sm$sd[2]^2 ) / v # Pooled variance

sp <- sqrt(sp2)

se <- sp * sqrt(1/sm$n[1] + 1/sm$n[2])

# Two-sided p-value

2 * pt(-abs(diff / se), df = v)

[1] 0.01245222

# Equal-tail confidence interval

diff + c(-1,1) * qt(.975, df = v) * se

[1] -2.655043 -0.335885
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Comparing two means Normal model

Bayesian analysis formulas

We calculate a 100(1− a)% credible interval using

y1 − y2 ± tn1+n2−2,1−a/2sp

√

1

n1
+

1

n2
.

We calculate a posterior probability using

P (µ1 − µ2 < 0|y) = P



Tn1+n2−2 <
0− (y1 − y2)

sp

√

1
n1

+ 1
n2





Thus, half the p-value corresponds to either P (µ1 − µ2 < 0|y) or P (µ1 − µ2 > 0|y).
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Comparing two means Normal model

Analyses using t.test

(tt <- t.test(sensitivity ~ process, data = d2, var.equal = TRUE))

Two Sample t-test

data: sensitivity by process

t = -2.5856, df = 54, p-value = 0.01245

alternative hypothesis: true difference in means between group P1 and group P2 is not equal to 0

95 percent confidence interval:

-2.655043 -0.335885

sample estimates:

mean in group P1 mean in group P2

7.743761 9.239224

# Since estimate of the difference is negative

# the following is P(mu_1 - mu_2 > 0)

tt$p.value / 2

[1] 0.006226109
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Comparing two means Unequal variances

Unequal variances

Consider the model
Yg,i

ind∼ N(µg, σg
2)

for g = 1, 2 and i = 1, . . . , ng. and you are interested in the relationship between µ1 and µ2.
Frequentist:

Y 1 − Y 2 − (µ1 − µ2)
√

S2
1

n1
+

S2
2

n2

·∼ tv

using Satterthwaite approximation for the degrees of freedom v.

Bayesian:
µg − yg
sg/

√
ng

∣

∣

∣

∣

y
ind∼ tng−1

Simulate means separately and take the difference.
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Comparing two means Unequal variances

Analyses using t.test

t.test(sensitivity ~ process,

data = d2,

var.equal = FALSE) # this was the default

Welch Two Sample t-test

data: sensitivity by process

t = -2.6932, df = 50.649, p-value = 0.009571

alternative hypothesis: true difference in means between group P1 and group P2 is not equal to 0

95 percent confidence interval:

-2.610398 -0.380530

sample estimates:

mean in group P1 mean in group P2

7.743761 9.239224
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Comparing two means Bayesian analysis

Posterior for µ1, µ2

Assume

Yg,i
ind∼ N(µg, σ

2
g) and p(µ1, µ2, σ

2
1, σ

2
2) ∝

1

σ2
1

1

σ2
2

.

Then
µg|y ind∼ tng−1(yg, s

2
g/ng)

and a draw for µg can be obtained by taking

yg + Tng−1sg/
√
ng, Tng−1

ind∼ tng−1(0, 1).
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Comparing two means Bayesian analysis

Bayesian analysis in R

nr = 1e5

sims <- bind_rows(

tibble( # tibble is just a special data.frame

rep = 1:nr,

process = "P1",

mu = sm$mean[1] + rt(nr, df = sm$n[1]-1) * sm$sd[1] / sqrt(sm$n[1])),

tibble(

rep = 1:nr,

process = "P2",

mu = sm$mean[2] + rt(nr, df = sm$n[2]-1) * sm$sd[2] / sqrt(sm$n[2]))

)
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Comparing two means Bayesian analysis

We can use these draws to compare the posteriors
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Comparing two means Bayesian analysis

Credible interval for the difference

To obtain statistical inference on the difference, we use the samples and take the difference

d3 <- sims %>%

spread(process, mu) %>%

mutate(diff = P1-P2)

# Bayes estimate for the difference

mean(d3$diff)

[1] -1.493267

# Estimated 95% equal-tail credible interval

quantile(d3$diff, c(.025,.975))

2.5% 97.5%

-2.6339752 -0.3483025

# Estimate of the probability that mu1 is smaller than mu2

mean(d3$diff < 0)

[1] 0.99409
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Comparing two means Three or more means

Three or more means

Now, let’s consider the more general problem of

Yg,i
ind∼ N(µg, σ

2
g)

for g = 1, 2, . . . , G and i = 1, . . . , ng and you are interested in the relationship amongst the µg.

We can perform the following statistical procedures:

Frequentist:

p-value for test of H0 : µg = µ for all g,
confidence interval for µg − µg′ ,

Bayesian: based on posterior for µ1, . . . , µG

credible interval for µg − µg′ ,
probability statements, e.g. P (µg < µg′ |y)

where g and g′ are two different groups.
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Comparing two means Three or more means

Data example

Suppose you have three manufacturing processes to produce sensors and you are interested in
the average sensitivity of the sensors.

So you run the three processes and record the sensitivity of each sensor in units of mV/V/mm
Hg (http://www.ni.com/white-paper/14860/en/). And you have the following summary
statistics:

# A tibble: 3 x 4

process n mean sd

<chr> <int> <dbl> <dbl>

1 P1 22 7.74 1.87

2 P2 34 9.24 2.26

3 P3 7 10.8 1.96
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Comparing two means Three or more means

p-values

When there are lots of means, the first null hypothesis is typically

H0 : µg = µ ∀ g

oneway.test(sensitivity ~ process, data = d)

One-way analysis of means (not assuming equal variances)

data: sensitivity and process

F = 7.6287, num df = 2.000, denom df = 17.418, p-value = 0.004174
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Comparing two means Three or more means

Pairwise differences

Then we typically look at pairwise differences:

pairwise.t.test(d$sensitivity,

d$process,

pool.sd = FALSE,

p.adjust.method = "none")

Pairwise comparisons using t tests with non-pooled SD

data: d$sensitivity and d$process

P1 P2

P2 0.0096 -

P3 0.0045 0.0870

P value adjustment method: none
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Comparing two means Three or more means

Posteriors for µ

When
Yg,i

ind∼ N(µg, σ
2
g),

we have
µg|y ind∼ tng−1(yg, s

2
g/ng)

and that a draw for µg can be obtained by taking

yg + Tng−1sg/
√
ng, Tng−1

ind∼ tng−1(0, 1).
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Comparing two means Three or more means

Compare posteriors
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Comparing two means Three or more means

Credible intervals for differences

Use the simulations to calculate posterior probabilities and credible intervals for differences.

# Estimate of the probability that one mean is larger than another

sims %>%

spread(process, mu) %>%

mutate(`mu1-mu2` = P1-P2,

`mu1-mu3` = P1-P3,

`mu2-mu3` = P2-P3) %>%

select(`mu1-mu2`,`mu1-mu3`,`mu2-mu3`) %>%

gather(comparison, diff) %>%

group_by(comparison) %>%

summarize(probability = mean(diff>0) %>% round(4),

lower = quantile(diff, .025) %>% round(2),

upper = quantile(diff, .975) %>% round(2)) %>%

mutate(credible_interval = paste("(",lower,",",upper,")", sep="")) %>%

select(comparison, probability, credible_interval)

# A tibble: 3 x 3

comparison probability credible_interval

<chr> <dbl> <chr>

1 mu1-mu2 0.0059 (-2.63,-0.35)

2 mu1-mu3 0.0037 (-5.06,-1.11)

3 mu2-mu3 0.0493 (-3.56,0.37)
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Comparing two means Common variance

Common variance model

In the model

Yg,i
ind
∼ N(µg, σ

2
g)

we can calculate a p-value for the following null hypothesis:

H0 : σg = σ for all g

bartlett.test(sensitivity ~ process, data = d)

Bartlett test of homogeneity of variances

data: sensitivity by process

Bartlett's K-squared = 0.90949, df = 2, p-value = 0.6346

This may give us reason to proceed as if the variances is the same in all groups, i.e.

Yg,i
ind
∼ N(µg, σ

2).

This assumption is common when the number of observations in the groups is small.
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Comparing two means Common variance

Comparing means when the variances are equal

Assuming Yg,i
ind∼ N(µg, σ

2), we can test

H0 : µg = µ ∀ g
oneway.test(sensitivity ~ process, data = d, var.equal = TRUE)

One-way analysis of means

data: sensitivity and process

F = 6.7543, num df = 2, denom df = 60, p-value = 0.002261

Then we typically look at pairwise differences,
i.e. H0 : µg = µg′ .

pairwise.t.test(d$sensitivity, d$process, p.adjust.method = "none")

Pairwise comparisons using t tests with pooled SD

data: d$sensitivity and d$process

P1 P2

P2 0.0116 -

P3 0.0012 0.0720

P value adjustment method: none
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Comparing two means Common variance

Posteriors for µ

If Yg,i
ind∼ N(µg, σ

2) and we use the prior p(µ1, . . . , µG, σ
2) ∝ 1/σ2, then

µg|y, σ2 ind∼ N(yg, σ
2/ng) σ2|y ∼ IG





n−G

2
,
1

2

G
∑

g=1

ng
∑

i=1

(yg,i − yg)
2





where n =
∑G

g=1 ng. and thus, we obtain joint samples for µ by performing the following

1. σ2(m) ∼ p(σ2|y)
2. For g = 1, . . . , G, µg ∼ p(µg|y, σ2(m)).
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Comparing two means Common variance

Compare posteriors
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Comparing two means Common variance

Credible interval for the differences

To compare the means, we compare the samples drawn from the posterior.

sims %>%

mutate(`mu1-mu2` = mu1-mu2,

`mu1-mu3` = mu1-mu3,

`mu2-mu3` = mu2-mu3) %>%

select(`mu1-mu2`,`mu1-mu3`,`mu2-mu3`) %>%

gather(comparison, diff) %>%

group_by(comparison) %>%

summarize(probability = mean(diff>0) %>% round(4),

lower = quantile(diff, .025) %>% round(2),

upper = quantile(diff, .975) %>% round(2)) %>%

mutate(credible_interval = paste("(",lower,",",upper,")", sep="")) %>%

select(comparison, probability, credible_interval)

# A tibble: 3 x 3

comparison probability credible_interval

<chr> <dbl> <chr>

1 mu1-mu2 0.0059 (-2.65,-0.35)

2 mu1-mu3 0.0007 (-4.92,-1.26)

3 mu2-mu3 0.036 (-3.34,0.15)
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Comparing two means Summary

Summary

Multiple (independent) normal means

p-values

confidence intervals

posterior densities

credible intervals

posterior probabilities
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Multiple Comparisons

Mice diet effect on lifetimes

Female mice were randomly assigned to six treatment groups to investigate
whether restricting dietary intake increases life expectancy. Diet treatments were:

NP - mice ate unlimited amount of nonpurified, standard diet

N/N85 - mice fed normally before and after weaning. After weaning, ration
was controlled at 85 kcal/wk

N/R50 - normal diet before weaning and reduced calorie diet (50 kcal/wk)
after weaning

R/R50 - reduced calorie diet of 50 kcal/wk both before and after weaning

N/R50 lopro - normal diet before weaning, restricted diet (50 kcal/wk) after
weaning and dietary protein content decreased with advancing age

N/R40 - normal diet before weaning and reduced diet (40 Kcal/wk) after
weaning.
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Exploratory analysis

library("Sleuth3")

# head(case0501)

summary(case0501)

Lifetime Diet

Min. : 6.4 N/N85:57

1st Qu.:31.8 N/R40:60

Median :39.5 N/R50:71

Mean :38.8 NP :49

3rd Qu.:46.9 R/R50:56

Max. :54.6 lopro:56

case0501 <- case0501 %>%

mutate(Diet = factor(Diet, c("NP","N/N85","N/R50","R/R50","lopro","N/R40")),

Diet = recode(Diet, lopro = "N/R50 lopro"))

case0501 %>% group_by(Diet) %>% summarize(n=n(), mean = mean(Lifetime), sd = sd(Lifetime))

# A tibble: 6 x 4

Diet n mean sd

<fct> <int> <dbl> <dbl>

1 NP 49 27.4 6.13

2 N/N85 57 32.7 5.13

3 N/R50 71 42.3 7.77

4 R/R50 56 42.9 6.68

5 N/R50 lopro 56 39.7 6.99

6 N/R40 60 45.1 6.70
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ggplot(case0501, aes(x=Diet, y=Lifetime)) +

geom_jitter(width=0.2, height=0) +

geom_boxplot(fill=NA, color='blue', outlier.color = NA) +

coord_flip() +

theme_bw()
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Are the data compatible with a common mean?

Let Yij represent the lifetime of mouse j in diet i for i = 1, . . . , I and

j = 1, . . . , ni. Assume Yij
ind∼ N(µi, σ

2) and calculate a pvalue for
H0 : µi = µ for all i.

bartlett.test(Lifetime ~ Diet, data = case0501)

Bartlett test of homogeneity of variances

data: Lifetime by Diet

Bartlett's K-squared = 10.996, df = 5, p-value = 0.05146

oneway.test(Lifetime ~ Diet, data = case0501, var.equal = TRUE)

One-way analysis of means

data: Lifetime and Diet

F = 57.104, num df = 5, denom df = 343, p-value < 2.2e-16

oneway.test(Lifetime ~ Diet, data = case0501, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: Lifetime and Diet

F = 64.726, num df = 5.00, denom df = 157.84, p-value < 2.2e-16
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Multiple Comparisons Statistical testing errors

Statistical testing errors

Definition

A type I error occurs when a true null hypothesis is rejected.

Definition

A type II error occurs when a false null hypothesis is not rejected. Power is
one minus the type II error probability.

We set our significance level a to control the type I error probability. If we
set a = 0.05, then we will incorrectly reject a true null hypothesis 5% of
the time.
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Statistical testing errors

Truth
Decision H0 true H0 false

H0 not true Type I error Correct (power)
H0 true Correct Type II error

Definition

The familywise error rate is the probability of rejecting at least one true
null hypothesis.
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Type I error for all pairwise comparisons of J groups

How many combinations when choosing 2 items out of J?

(

J

2

)

=
J !

2!(J − 2)!
.

If J = 6, then there are 15 different comparison of means. If we set
a = 0.05 as our significance level, then individually each test will only
incorrectly reject 5% of the time.

If we have 15 tests and use a = 0.05, what is the familywise error rate?

1− (1− 0.05)15 = 1− (0.95)15 = 1− 0.46 = 0.54

So there is a greater than 50% probability of falsely rejecting at least one
true null hypothesis!
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Multiple Comparisons Bonferroni correction

Bonferroni correction

Definition

If we do m tests and want the familywise error rate to be a, the
Bonferroni correction uses a/m for each individual test. The familywise
error rate, for independent tests, is 1− (1− a/m)m.
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Multiple Comparisons Bonferroni correction

Pairwise comparisons

If we want to consider all pairwise comparisons of the average lifetimes on
the 6 diets, we have 15 tests. In order to maintain a familywise error rate
of 0.05, we need a significance level of 0.05/15 = 0.0033333.

pairwise.t.test(case0501$Lifetime, case0501$Diet, p.adjust.method = "none")

Pairwise comparisons using t tests with pooled SD

data: case0501$Lifetime and case0501$Diet

NP N/N85 N/R50 R/R50 N/R50 lopro

N/N85 5.9e-05 - - - -

N/R50 < 2e-16 1.1e-14 - - -

R/R50 < 2e-16 8.9e-15 0.622 - -

N/R50 lopro < 2e-16 5.2e-08 0.029 0.012 -

N/R40 < 2e-16 < 2e-16 0.017 0.073 1.6e-05

P value adjustment method: none
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Multiple Comparisons Bonferroni correction

Pairwise comparisons

If we want to consider all pairwise comparisons of the average lifetimes on
the 6 diets, we have 15 tests. Alternatively, you can let R do the adjusting
for you, but now you need to compare with the original significance level a.

pairwise.t.test(case0501$Lifetime, case0501$Diet, p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

data: case0501$Lifetime and case0501$Diet

NP N/N85 N/R50 R/R50 N/R50 lopro

N/N85 0.00089 - - - -

N/R50 < 2e-16 1.6e-13 - - -

R/R50 < 2e-16 1.3e-13 1.00000 - -

N/R50 lopro < 2e-16 7.9e-07 0.44018 0.17507 -

N/R40 < 2e-16 < 2e-16 0.24881 1.00000 0.00024

P value adjustment method: bonferroni
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Multiple Comparisons Bonferroni correction

Comments on the Bonferroni correction

The Bonferroni correction can be used in any situation. In particular, it
can be used on unadjusted pvalues reported in an article that has many
tests by comparing their pvalues to a/m where m is the number of tests
they perform.

The Bonferroni correction is (in general) the most conservative multiple
comparison adjustment, i.e. it will lead to the least null hypothesis
rejections.
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Multiple Comparisons Constructing multiple confidence intervals

Constructing multiple confidence intervals

A 100(1− a)% confidence interval should contain the true value
100(1− a)% of the time when used with different data sets.

An error occurs if the confidence interval does not contain the true value.

Just like the Type I error and familywise error rate, we can ask what is the
probability at least one confidence interval does not cover the true value.

The procedures we will talk about for confidence intervals have equivalent
approaches for hypothesis testing (pvalues). Within these procedures we
still have the equivalence between pvalues and CIs.
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Multiple Comparisons Constructing multiple confidence intervals

Constructing multiple confidence intervals

Confidence interval for the difference between group j and group j′:

Y j − Y j′ ±M sp

√

1

nj

+
1

nj′

where M is a multiplier that depends on the adjustment procedure:

Procedure M Use
LSD tn−J(1− a/2) After significant F -test

(no adjustment)
Dunnett multivariate t Compare all groups to control

Tukey-Kramer qJ,n−J(1− a)/
√
2 All pairwise comparisons

Scheffé
√

(J − 1)F(J−1,n−J)(1− a) All contrasts
Bonferroni tn−J(1− (a/m)/2) m tests

(most generic)
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Multiple Comparisons Constructing multiple confidence intervals

Tukey for all pairwise comparisons

TukeyHSD(aov(Lifetime ~ Diet, data = case0501))

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Lifetime ~ Diet, data = case0501)

$Diet

diff lwr upr p adj

N/N85-NP 5.2891873 1.5606269 9.0177476 0.0008380

N/R50-NP 14.8951423 11.3405719 18.4497127 0.0000000

R/R50-NP 15.4836735 11.7397556 19.2275913 0.0000000

N/R50 lopro-NP 12.2836735 8.5397556 16.0275913 0.0000000

N/R40-NP 17.7146259 14.0294069 21.3998448 0.0000000

N/R50-N/N85 9.6059550 6.2021702 13.0097399 0.0000000

R/R50-N/N85 10.1944862 6.5934168 13.7955556 0.0000000

N/R50 lopro-N/N85 6.9944862 3.3934168 10.5955556 0.0000008

N/R40-N/N85 12.4254386 8.8854359 15.9654413 0.0000000

R/R50-N/R50 0.5885312 -2.8320696 4.0091319 0.9963976

N/R50 lopro-N/R50 -2.6114688 -6.0320696 0.8091319 0.2460200

N/R40-N/R50 2.8194836 -0.5367684 6.1757356 0.1564608

N/R50 lopro-R/R50 -3.2000000 -6.8169683 0.4169683 0.1167873

N/R40-R/R50 2.2309524 -1.3252222 5.7871269 0.4684413

N/R40-N/R50 lopro 5.4309524 1.8747778 8.9871269 0.0002306
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False Discovery Rate

Not wanting to make a single mistake is pretty conservative.
In high-throughput fields a more common multiple comparison adjustment
is false discovery rate.

Definition

False discovery rate procedures try to control the expected proportion of
incorrectly rejected null hypotheses.
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Multiple Comparisons Summary

How to incorporate multiple comparison adjustments

1. Determine what tests are going to be run (before looking at the data)
or what confidence intervals are going to be constructed.

2. Determine which multiple comparison adjustment is the most
relevant.

3. Use/state that adjustment and interpret your results.
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