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Probability Interpretation

Probability - Interpretation

What do we mean when we say the word probability/chance/likelihood/odds? For example,

The probability that Kamala Harris will becomes president in 2025 is 55%.

The chance I will win a game of solitaire is 20%.

The odds of there being a time capsule behind this wall is 100:1.

Interpretations:

Relative frequency: Probability is the proportion of
times the event occurs as the number of times the
event is attempted tends to infinity.

Personal belief: Probability is a statement about
your personal belief in the event occuring.
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Probability Set operations

Probability - Example

Let C be a successful connection to the internet from a laptop event.

From our experience with the wireless network and our internet service provider, we

believe the probability we successfully connect is 90 %.

We write P (C) = 0.9.

To be able to work with probabilities, in particular, to be able to compute probabilities

of events, a mathematical foundation is necessary.
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Probability Set operations

Sets - definition

A set is a collection of things. We use the following notation

ω ∈ A means ω is an element of the set A,
ω /∈ A means ω is not an element of the set A,
A ⊆ B (or B ⊇ A) means the set A is a subset of B (with the sets possibly being equal),
and
A ⊂ B (or B ⊃ A) means the set A is a proper subset of B, i.e. there is at least one
element in B that is not in A.

The sample space, Ω, is the set of all outcomes of an
experiment.
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Probability Set operations

Set - examples

The set of all possible sums of two 6-sided dice rolls is Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and

2 ∈ Ω
1 /∈ Ω
{2, 3, 4} ⊂ Ω
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Probability Set operations

Set comparison, operations, terminology

For the following A,B ⊆ Ω where Ω is the implied universe of all elements under study,

1. Union (∪): A union of events is an event consisting of all the outcomes in these events.

A ∪B = {ω | ω ∈ A or ω ∈ B}

2. Intersection (∩): An intersection of events is an event consisting of the common
outcomes in these events.

A ∩B = {ω | ω ∈ A and ω ∈ B}

3. Complement (AC): A complement of an event A is an event that occurs when event A
does not happen.

AC = {ω | ω /∈ A and ω ∈ Ω}

4. Set difference (A \B): All elements in A that are not in B, i.e.

A \B = {ω|ω ∈ A and ω /∈ B}
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Probability Set operations

Venn diagrams

A B

A B

A B

A B

complement difference

union intersection
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Probability Set operations

Example

Consider the set Ω equal to all possible sum of two 6-sided die rolls i.e.
Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and two subsets

all odd rolls: A = {3, 5, 7, 9, 11}

all rolls below 6: B = {2, 3, 4, 5}

Then we have

A ∪B = {2, 3, 4, 5, 7, 9, 11}

A ∩B = {3, 5}

AC = {2, 4, 6, 8, 10, 12}

BC = {6, 7, 8, 9, 10, 11, 12}

A \B = {7, 9, 11}

B \A = {2, 4}
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Probability Set operations

Set comparison, operations, terminology (cont.)

5. Empty Set ∅ is a set having no elements, i.e. {}. The empty set is a subset of every set:

∅ ⊆ A

6. Disjoint sets: Sets A,B are disjoint if their intersection is empty:

A ∩B = ∅

7. Pairwise disjoint sets: Sets A1, A2, . . . are pairwise disjoint if all pairs of these events are
disjoint:

Ai ∩Aj = ∅ for any i ̸= j

8. De Morgan’s Laws:

(A ∪B)C = AC ∩BC and (A ∩B)C = AC ∪BC
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Probability Set operations

Examples

Let A = {2, 3, 4}, B = {5, 6, 7}, C = {8, 9, 10}, D = {11, 12}. Then

A ∩B = ∅

A,B,C,D are pairwise disjoint

De Morgan’s:

(A ∪B) = {2, 3, 4, 5, 6, 7}
(A ∪B)C = {8, 9, 10, 11, 12}

AC = {5, 6, 7, 8, 9, 10, 11, 12}
BC = {2, 3, 4, 8, 9, 10, 11, 12}

AC ∩BC = {8, 9, 10, 11, 12}

so, by example,

(A ∪B)C = AC ∩BC .
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Probability Kolmogorov’s Axioms

Kolmogorov’s Axioms

A system of probabilities (a probability model) is an assignment of numbers P (A) to events
A ⊆ Ω such that

(i) 0 ≤ P (A) ≤ 1 for all A

(ii) P (Ω) = 1.

(iii) if A1, A2, . . . are pairwise disjoint events (i.e. Ai ∩Aj = ∅ for all i ̸= j) then

P (A1 ∪A2 ∪ . . .) = P (A1) + P (A2) + . . .
=

∑

i P (Ai).
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Probability Kolmogorov’s Axioms

Kolmogorov’s Axioms (cont.)

These are the basic rules of operation of a probability model

every valid model must obey these,

any system that does, is a valid model.

Whether or not a particular model is realistic is different question.

Example: Draw a single card from a standard deck of playing cards: Ω = {red, black} Two
different, equally valid probability models are:

Model 1 Model 2
P (Ω) = 1 P (Ω) = 1
P (red) = 0.5 P (red) = 0.3
P (black) = 0.5 P (black) = 0.7

Mathematically, both schemes are equally valid.
But, of course, our real world experience would prefer
model 1 over model 2.
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Probability Kolmogorov’s Axioms

Useful Consequences of Kolmogorov’s Axioms

Let A, B ⊆ Ω.

Probability of the Complementary Event: P
(

AC
)

= 1− P (A)
Corollary: P (∅) = 0

Addition Rule of Probability

P (A ∪B) = P (A) + P (B)− P (A ∩B)

If A ⊆ B, then P (A) ≤ P (B).
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Probability Kolmogorov’s Axioms

Example: Using Kolmogorov’s Axioms

We attempt to access the internet from a laptop at home. We connect successfully if and only
if the wireless (WiFi) network works and the internet service provider (ISP) network works.
Assume

P ( WiFi up ) = .9

P ( ISP up ) = .6, and

P ( WiFi up and ISP up ) = .55.

1. What is the probability that the WiFi is up or the
ISP is up?

2. What is the probability that both the WiFi and the
ISP are down?

3. What is the probability that we fail to connect?
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Probability Kolmogorov’s Axioms

Solution

Let A ≡ WiFi up; B ≡ ISP up

1. What is the probability that the WiFi is up or the ISP is up?

P ( WiFi up or ISP up) = P (A∪B) = 0.9+0.6−0.55 = 0.95

2. What is the probability that both the WiFi and the ISP are down?

P ( WiFi down and ISP down) = P
(

AC ∩BC
)

= P
(

[A ∪B]C
)

= 1− .95 = .05

3. What is the probability that we fail to connect?

P ( WiFi down or ISP down)
= P

(

AC ∪BC
)

= P
(

AC
)

+ P
(

BC
)

− P
(

AC ∩BC
)

= P
(

AC ∪BC
)

= (1− .9) + (1− .6)− .05 = .1 + .4− .05 = .45
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Probability Conditional probability

Conditional probability - Definition

The conditional probability of an event A given an event B is

P (A|B) =
P (A ∩B)

P (B)
=

P (A andB)

P (B)
=

P (A,B)

P (B)

if P (B) > 0.

Intuitively, the fraction of outcomes in B that are also in A.

Corollary:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).
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Probability Conditional probability

Random CPUs

A box has 500 CPUs with a speed of 1.8 GHz and 500 with a speed of 2.0 GHz. The numbers of good (G) and defective
(D) CPUs at the two different speeds are as shown below.

1.8 GHz 2.0 GHz Total
G 480 490 970
D 20 10 30

Total 500 500 1000

We select a CPU at random and observe its speed. What is the probability that the CPU is defective given that its speed
is 1.8 GHz?
Let

D be the event the CPU is defective and

S be the event the CPU speed is 1.8 GHz.

Then

P (S) = 500/1000 = 0.5

P (S ∩D) = 20/1000 = 0.02.

P (D|S) = P (S ∩D)/P (S) = 0.02/0.5 = 0.04.
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Probability Independence

Statistical independence - Definition

Events A and B are statistically independent if

P (A ∩B) = P (A)× P (B)

or, equivalently,
P (A|B) = P (A).

Intuition: the occurrence of one event does not affect
the probability of the other.

Example: In two tosses of a coin, the result of the first
toss does not affect the probability of the second
toss being heads.
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Probability Independence

WiFi example

In trying to connect my laptop to the internet, I need

my WiFi network to be up (event A) and

the ISP network to be up (event B).

Assume the probability the WiFi network is up is 0.9 and the ISP network is up is 0.6. If the
two events are independent, what is the probability we can connect to the internet?

Since we have independence, we know

P (A ∩B) = P (A)× P (B) = 0.9× 0.6 = 0.54.
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Probability Independence

Independence and disjoint

Warning: Independence and disjointedness are two very different concepts!

Disjoint:

If A and B are disjoint, their intersection is empty
and therefore has probability 0:

P (A ∩B) = P (∅) = 0.

Independence:

If A and B are independent events, the probability
of their intersection can be computed as the
product of their individual probabilities:

P (A ∩B) = P (A) · P (B)
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Probability Reliability

Parallel system - Definition

A parallel system consists of K components c1, . . . , cK arranged in such a way that the system
works if at least one of the K components functions properly.
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Probability Reliability

Serial system - Definition

A serial system consists of K components c1, . . . , cK arranged in such a way that the system
works if and only if all of the components function properly.
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Probability Reliability

Reliability - Definition

The reliability of a system is the probability the system works.

Example: The reliability of the WiFi-ISP network (assuming independence) is 0.54.
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Probability Reliability

Reliability of parallel systems with independent components

Let c1, . . . , cK denote the K components in a parallel system. Assume the K components
operate independently and P (ck works) = pk. What is the reliability of the system?

P ( system works ) = P ( at least one component works )
= 1− P ( all components fail )
= 1− P (c1 fails and c2 fails . . . and ck fails )

= 1−
∏K

k=1 P (ck fails)

= 1−
∏K

k=1(1− pk).
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Probability Reliability

Reliability of serial systems with independent components

Let c1, . . . , cK denote the K components in a serial system. Assume the K components
operate independently and P (ck works ) = pk. What is the reliability of the system?

P ( system works ) = P ( all components work)

=
∏K

k=1 P (ck works)

=
∏K

k=1 pk.
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Probability Reliability

Reliability example

Each component in the system shown below is opearable with probability 0.92 independently of other
components. Calculate the reliability.
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Probability Reliability

Reliability example

Each component in the system shown below is opearable with probability 0.92 independently of other
components. Calculate the reliability.

1. Serial components A and B can be replaced by a
component F that operates with probability
P (A ∩B) = (0.92)2 = 0.8464.

2. Parallel components D and E can be replaced by
component G that operates with probability
P (D ∪ E) = 1− (1− 0.92)2 = 0.9936.
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Probability Reliability

Reliability example (cont.)

Updated circuit:

3. Serial components C and G can be replaced
by a component H that operates with probability
P (C ∩G) = (0.92)(0.9936) = 0.9141.
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Probability Reliability

Reliability example (cont.)

Updated circuit:

4. Parallel componenents F and H are in parallel,
so the reliability of the system is
P (F ∪H) = 1− (1− 0.8464)(1− 0.9141) ≈ 0.99.
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Probability Law of Total Probability

Partition

Definition

A collection of events B1, . . . BK is called a partition (or cover) of Ω if

the events are pairwise disjoint (i.e., Bi ∩Bj = ∅ for i ̸= j), and

the union of the events is Ω (i.e.,
⋃K

k=1Bk = Ω).
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Probability Law of Total Probability

Example

Consider the sum of two 6-sided die, i.e.

Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Here are some covers:

{2, 3, 4}, {5, 6, 7, 8, 9, 10, 11, 12}

{2, 3, 4}, {5, 6, 7}, {8, 9, 10}, {11, 12}

A2, A3, . . . , A12 where Ai = {i}

any A and AC where A ⊆ Ω
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Probability Law of Total Probability

Law of Total Probability

Law of Total Probability:
If the collection of events B1, . . . , BK is a partition of Ω, and A is an event, then

P (A) =
K
∑

k=1

P (A|Bk)P (Bk).

Proof:

P (A) = P
(

⋃K

k=1 A ∩Bk

)

partition

=
∑K

k=1 P (A ∩Bk) pairwise disjoint

=
∑K

k=1 P (A|Bk)P (Bk) conditional probability
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Probability Law of Total Probability

Law of Total Probability - Graphically
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Probability Law of Total Probability

Law of Total Probability - Example

In the come out roll of craps, you win if the roll is a 7 or 11. By the law of total probability,
the probability you win is

P (Win) =

12
∑

i=2

P (Win|i)P (i) = P (7) + P (11)

since P (Win|i) = 1 if i = 7, 11 and 0 otherwise.
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Probability Bayes’ Rule

Bayes’ Rule

Bayes’ Rule:
If B1, . . . , BK is a partition of Ω, and A is an event in Ω, then

P (Bk|A) =
P (A|Bk)P (Bk)

∑K
k=1 P (A|Bk)P (Bk)

.

Proof:

P (Bk|A) = P (A∩Bk)
P (A) conditional probability

= P (A|Bk)P (Bk)
P (A) conditional probability

= P (A|Bk)P (Bk)∑
K
k=1

P (A|Bk)P (Bk)
Law of Total Probability
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Probability Bayes’ Rule

Bayes’ Rule: Craps example

If you win on a come-out roll in craps, what is the probability you rolled a 7?

P (7|Win) = P (Win|7)P (7)
∑

12

i=2
P (Win|i)P (i)

= P (7)
P (7)+P (11) .
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Probability Bayes’ Rule

Bayes’ Rule: CPU testing example

A given lot of CPUs contains 2% defective CPUs. Each CPU is tested before delivery.
However, the tester is not wholly reliable:

P ( tester says CPU is good | CPU is good ) = 0.95
P ( tester says CPU is defective | CPU is defective ) = 0.94

If the test device says the CPU is defective, what is the probability that the CPU is actually
defective?
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Probability Bayes’ Rule

CPU testing (cont.)

Let

Cg (Cd) be the event the CPU is good (defective)

Tg (Td) be the event the tester says the CPU is good (defective)

We know

0.02 = P (Cd) = 1− P (Cg)

0.95 = P (Tg|Cg) = 1− P (Td|Cg)

0.94 = P (Td|Cd) = 1− P (Tg|Cd)

Using Bayes’ Rule, we have

P (Cd|Td) = P (Td|Cd)P (Cd)
P (Td|Cd)P (Cd)+P (Td|Cg)P (Cg)

= P (Td|Cd)P (Cd)
P (Td|Cd)P (Cd)+[1−P (Tg|Cg)][1−P (Cd)]

= 0.94×0.02
0.94×0.02+[1−0.95]×[1−0.02]

= 0.28
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Probability Bayes’ Rule

Probability Summary

Probability Interpretation

Sets and set operations

Kolmogorov’s Axioms

Conditional Probability

Independence

Reliability

Law of Total Probability

Bayes’ Rule
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Random variables

Random variables

If Ω is the sample space of an experiment, a random variable X is a function X(ω) : Ω 7→ R.

Idea: If the value of a numerical variable depends on the outcome of an experiment, we call
the variable a random variable.

Examples of random variables from rolling two 6-sided dice:

Sum of the two dice

Indicator of the sum being greater than 5

We will use an upper case Roman letter
(late in the alphabet) to indicate a random variable
and a lower case Roman letter to indicate a realized
value of the random variable.
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Random variables

8 bit example

Suppose, 8 bits are sent through a communication channel. Each bit has a certain probability
to be received incorrectly. We are interested in the number of bits that are received incorrectly.

Let X be the number of incorrect bits received.

The possible values for X are {0, 1, 2, 3, 4, 5, 6, 7, 8}.

Example events:

No incorrect bits received: {X = 0}.
At least one incorrect bit received: {X ≥ 1}.
Exactly two incorrect bits received: {X = 2}.
Between two and seven (inclusive) incorrect bits
received: {2 ≤ X ≤ 7}.
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Random variables Range

Range/image of random variables

The range (or image) of a random variable X is defined as

Range(X) := {x : x = X(ω) for some ω ∈ Ω}

If the range is finite or countably infinite, we have a discrete random variable. If the range is uncountably
infinite, we have a continuous random variable.
Examples:

Put a hard drive into service, measure Y = “time until the first major failure” and thus
Range(Y ) = (0,∞). Range of Y is an interval (uncountable range), so Y is a continuous random
variable.

Communication channel: X = “# of incorrectly received bits
out of 8 bits sent” with Range(X) = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Range of X is a finite set, so X is a discrete random variable.

Communication channel: Z = “# of incorrectly received bits
in 10 minutes” with Range(Z) = {0, 1, . . .}.
Range of Z is a countably infinite set, so Z is a discrete
random variable.
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Discrete random variables Distribution

Distribution

The collection of all the probabilities related to X is the distribution of X.

For a discrete random variable, the function

pX(x) = P (X = x)

is the probability mass function (pmf) and the cumulative distribution function (cdf) is

FX(x) = P (X ≤ x) =
∑

y≤x

pX(y).

The set of non-zero probability values of X is called
the support of the distribution f .
This is the same as the range of X.
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Discrete random variables Distribution

Examples

A probability mass function is valid if it defines a valid set of probabilities, i.e. they obey
Kolmogorov’s axioms.

Which of the following functions are a valid probability mass functions?

x -3 -1 0 5 7

pX(x) 0.1 0.45 0.15 0.25 0.05

y -1 0 1.5 3 4.5

pY (y) 0.1 0.45 0.25 -0.05 0.25

z 0 1 3 5 7

pZ(z) 0.22 0.18 0.24 0.17 0.18
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Discrete random variables Die rolling

Rolling a fair 6-sided die

Let Y be the number of pips on the upturned face of a die. The support of Y is
{1, 2, 3, 4, 5, 6}. If we believe the die has equal probability for each face, then image, pmf, and
cdf for Y are

y 1 2 3 4 5 6

pY (y) = P (Y = y) 1

6

1

6

1

6

1

6

1

6

1

6

FY (y) = P (Y ≤ y) 1

6

2

6

3

6

4

6

5

6

6

6
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Discrete random variables Dragonwood

Dragonwood

Dragonwood has 6-sided dice with the following # on the 6 sides: {1, 2, 2, 3, 3, 4}.

What is the support, pmf, and cdf for the sum of the upturned numbers when rolling 3
Dragonwood dice?

# Three dice

die = c(1,2,2,3,3,4)

rolls = expand.grid(die1 = die, die2 = die, die3 = die)

sum = rowSums(rolls); tsum = table(sum)

dragonwood3 = data.frame(x = as.numeric(names(tsum)),

pmf = as.numeric(table(sum)/length(sum))) %>%

mutate(cdf = cumsum(pmf))

x P (X = x) P (X ≤ x)
3 0.005 0.005
4 0.028 0.032
5 0.083 0.116
6 0.162 0.278
7 0.222 0.500
8 0.222 0.722
9 0.162 0.884

10 0.083 0.968
11 0.028 0.995
12 0.005 1.000
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Discrete random variables Dragonwood

Dragonwood - pmf and cdf
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Discrete random variables Dragonwood

Properties of pmf and cdf

Properties of probability mass function pX(x) = P (X = x):

0 ≤ pX(x) ≤ 1 for all x ∈ R.
∑

x∈S pX(x) = 1 where S is the support.

Properties of cumulative distribution function FX(x):

0 ≤ FX(x) ≤ 1 for all x ∈ R

FX is nondecreasing, (i.e. if x1 ≤ x2 then FX(x1) ≤ FX(x2).)

limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

FX(x) is right continuous with respect to x
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Discrete random variables Dragonwood

Dragonwood (cont.)

In Dragonwood, you capture monsters by rolling a sum equal to or greater than its defense. Suppose
you can roll 3 dice and the following monsters are available to be captured:

Spooky Spiders worth 1 victory point with a defense of 3.

Hungry Bear worth 3 victory points with a defense of 7.

Grumpy Troll worth 4 victory points with a defense of 9.

Which monster should you attack?
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Discrete random variables Dragonwood

Dragonwood (cont.)

Calculate the probability by computing one minus the cdf evaluated at
“defense minus 1”. Let X be the sum of the number on 3 Dragonwood dice. Then

P (X ≥ 3) = 1− P (X ≤ 2) = 1

P (X ≥ 7) = 1− P (X ≤ 6) = 0.722.

P (X ≥ 9) = 1− P (X ≤ 8) = 0.278.

If we multiply the probability by the
number of victory points,
then we have the “expected points”:

1× P (X ≥ 3) = 1

3× P (X ≥ 7) = 2.17.

4× P (X ≥ 9) = 1.11.
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Discrete random variables Expectation

Expectation

Let X be a random variable and h be some function. The expected value of a function of a
(discrete) random variable is

E[h(X)] =
∑

i

h(xi) · pX(xi).

Intuition: Expected values are weighted averages

of the possible values weighted by their probability.

If h(x) = x, then

E[X] =
∑

i

xi · pX(xi)

and we call this the expectation of X
and commonly use the symbol µ for the expectation.
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Discrete random variables Expectation

Dragonwood (cont.)

What is the expectation of the sum of 3 Dragonwood dice?

expectation = with(dragonwood3, sum(x*pmf))

expectation

[1] 7.5

The expectation can be thought of as the center of mass if we place mass pX(x) at
corresponding points x.
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Discrete random variables Expectation

Biased coin

Suppose we have a biased coin represented by the following pmf:

y 0 1
pY (y) 1− p p

What is the expected value?

If p = 0.9,
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Discrete random variables Properties of expectations

Properties of expectations

Let X and Y be random variables and a, b, and c be constants. Then

E[aX + bY + c] = aE[X] + bE[Y ] + c.

In particular

E[X + Y ] = E[X] + E[Y ],

E[aX] = aE[X], and

E[c] = c.

(STAT5870@ISU) P2 - Discrete Random Variables November 22, 2024 16 / 45



Discrete random variables Properties of expectations

Dragonwood (cont.)

Enhancement cards in Dragonwood allow you to improve your rolls. Here are two enhancement cards:

Cloak of Darkness adds 2 points to all capture attempts and

Friendly Bunny allows you (once) to roll an extra die.

What is the expected attack roll total if you had 3 Dragonwood dice, the Cloak of Darkness, and are
using the Friendly Bunny?

Let

X be the sum of 3 Dragonwood dice (we know E[X] = 7.5),

Y be the sum of 1 Dragonwood die which has E[Y ] = 2.5.

Then the attack roll total is X + Y + 2 and the
expected attack roll total is

E[X + Y + 2] = E[X] + E[Y ] + 2 = 7.5 + 2.5 + 2 = 12.
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Discrete random variables Variance

Variance

The variance of a random variable is defined as the expected squared deviation from the mean.
For discrete random variables, variance is

V ar[X] = E[(X − µ)2] =
∑

i

(xi − µ)2 · pX(xi)

where µ = E[X]. The symbol σ2 is commonly used for the variance.
The variance is analogous to moment of intertia in classical mechanics.

The standard deviation (sd) is the positive square root
of the variance:

SD[X] =
√

V ar[X].

The symbol σ is commonly used for sd.
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Discrete random variables Variance

Properties of variance

Two discrete random variables X and Y are independent if

pX,Y (x, y) = pX(x)pY (y).

If X and Y are independent, and a, b, and c are constants, then

V ar[aX + bY + c] = a2V ar[X] + b2V ar[Y ].

Special cases:

V ar[c] = 0

V ar[aX] = a2V ar[X]

V ar[X + Y ] = V ar[X] + V ar[Y ]
(if X and Y are independent)
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Discrete random variables Variance

Dragonwood (cont.)

What is the variance for the sum of the 3 Dragonwood dice?

variance = with(dragonwood3, sum((x-expectation)^2*pmf))

variance

[1] 2.75

What is the standard deviation for the sum of the pips on 3 Dragonwood dice?

sqrt(variance)

[1] 1.658312
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Discrete random variables Variance

Biased coin

Suppose we have a biased coin represented by the following pmf:

y 0 1
pY (y) 1− p p

What is the variance?

1. E[Y ] = p

2. V ar[Y ] = (0− p)2(1− p) + (1− p)2 × p = p− p2 = p(1− p)

When is this variance maximized?
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Discrete distributions

Special discrete distributions

Bernoulli

binomial

Poisson

Note: The range is always finite or countable.
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Discrete distributions Bernoulli

Bernoulli random variables

A Bernoulli experiment has only two outcomes: success/failure.

Let

X = 1 represent success and

X = 0 represent failure.

The probability mass function pX(x) is

pX(0) = 1− p pX(1) = p.

We use the notation X ∼ Ber(p) to denote a random
variable X that follows a Bernoulli distribution
with success probability p, i.e. P (X = 1) = p.
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Discrete distributions Bernoulli

Bernoulli experiment examples

Toss a coin: Ω = {Heads, Tails}

Throw a fair die and ask if the face value is a six:
Ω = {face value is a six, face value is not a six}

Send a message through a network and record whether or not it is received:
Ω = {successful transmission, unsuccessful transmission}

Draw a part from an assembly line and record whether or not it is defective:
Ω = {defective, good}

Response to the question
“Are you in favor of an increased in property tax
xto pay for a new high school?”:
Ω = {yes, no}
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Discrete distributions Bernoulli

Bernoulli random variable (cont.)

The cdf of the Bernoulli random variable is

FX(x) = P (X ≤ x) =







0 x < 0
1− p 0 ≤ x < 1
1 1 ≤ x

The expected value is

E[X] =
∑

x

pX(x) = 0 · (1− p) + 1 · p = p.

The variance is

V ar[X] =
∑

x

(x− E[X])2pX(x)

= (0− p)2 · (1− p) + (1− p)2 · p
= p(1− p).
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Discrete distributions Bernoulli

Sequence of Bernoulli experiments

An experiment consisting of n independent and identically distributed Bernoulli experiments.

Examples:

Toss a coin n times and record the nubmer of heads.

Send 23 identical messages through the network independently and record the number
successfully received.

Draw 5 cards from a standard deck with replacement (and reshuffling) and record
whether or not the card is a king.
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Discrete distributions Bernoulli

Independent and identically distributed

Let Xi represent the ith Bernoulli experiment.

Independence means

pX1,...,Xn
(x1, . . . , xn) =

n
∏

i=1

pXi
(xi),

i.e. the joint probability is the product of the individual probabilities.

Identically distributed (for Bernoulli random variables) means

P (Xi = 1) = p ∀ i,

and more generally, the distribution is the same for all
the random variables.

iid: independent and identically distributed

ind: independent
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Discrete distributions Bernoulli

Sequences of Bernoulli experiments

Let Xi denote the outcome of the ith Bernoulli experiment. We use the notation

Xi
iid
∼ Ber(p), for i = 1, . . . , n

to indicate a sequence of n independent and identically distributed Bernoulli experiments.

We could write this equivalently as

Xi
ind
∼ Ber(p), for i = 1, . . . , n

but this is different than

Xi
ind
∼ Ber(pi), for i = 1, . . . , n

as the latter has a different success probability for each
experiment.
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Discrete distributions Binomial

Binomial random variable

Suppose we perform a sequence of n iid Bernoulli experiments and only record the number of
successes, i.e.

Y =
n
∑

i=1

Xi.

Then we use the notation Y ∼ Bin(n, p) to indicate a binomial random variable with

n attempts and

probability of success p.
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Discrete distributions Binomial

Binomial probability mass function

We need to obtain
pY (y) = P (Y = y) ∀ y ∈ Ω = {0, 1, 2, . . . , n}.

The probability of obtaining a particular sequence of y success and n− y failures is

py(1− p)n−y

since the experiments are iid with success probability p. But there are
(

n

y

)

=
n!

y!(n− y)!

ways of obtaining a sequence of y success and n− y

failures. Thus, the binomial pmf is

pY (y) = P (Y = y) =

(

n

y

)

py(1− p)n−y.
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Discrete distributions Binomial

Properties of binomial random variables

The expected value is

E[Y ] = E

[

n
∑

i=1

Xi

]

=
n
∑

i=1

E[Xi] =
n
∑

i=1

p = np.

The variance is

V ar[Y ] =

n
∑

i=1

V ar[Xi] = np(1− p)

since the Xi are independent.

The cumulative distribution function is

FY (y) = P (Y ≤ y) =

⌊y⌋
∑

x=0

(

n

x

)

px(1− p)n−x.
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Discrete distributions Binomial

Component failure rate

Suppose a box contains 15 components that each have a failure rate of 5%.

What is the probability that

1. exactly two out of the fifteen components are defective?

2. at most two components are defective?

3. more than three components are defective?

4. more than 1 but less than 4 are defective?
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Discrete distributions Binomial

Binomial pmf

Let Y be the number of defective components and assume Y ∼ Bin(15, 0.05).
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Discrete distributions Binomial

Component failure rate - solutions

Let Y be the number of defective components and assume Y ∼ Bin(15, 0.05).

1. P (Y = 2) =
(

15

2

)

(0.05)2(1− 0.05)15−2

2. P (Y ≤ 2) =
∑

2

x=0

(

15

x

)

(0.05)x(1− 0.05)15−x

3. P (Y > 3) = 1− P (Y ≤ 3) = 1−
∑

3

x=0

(

15

x

)

(0.05)x(1− 0.05)15−x

4. P (1 < Y < 4) =
∑

3

x=2

(

15

x

)

(0.05)x(1− 0.05)15−x
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Discrete distributions Binomial

Component failure rate - solutions in R

n <- 15

p <- 0.05

choose(15, 2)

[1] 105

dbinom(2, n, p) # P(Y=2)

[1] 0.1347523

pbinom(2, n, p) # P(Y<=2)

[1] 0.9637998

1 - pbinom(3, n, p) # P(Y>3)

[1] 0.005467259

sum(dbinom(c(2, 3), n, p)) # P(1<Y<4) = P(Y=2)+P(Y=3)

[1] 0.1654853
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Discrete distributions Poisson

Poisson experiments

Many experiments can be thought of as “how many rare events will occur in a certain amount
of time or space?” For example,

# of alpha particles emitted from a polonium bar in an 8 minute period

# of flaws on a standard size piece of manufactured product, e.g., 100m coaxial cable,
100 sq.meter plastic sheeting

# of hits on a web page in a 24h period
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Discrete distributions Poisson

Poisson random variable

A Poisson random variable has pmf

p(x) =
e−λλx

x!
for x = 0, 1, 2, 3, . . .

where λ is called the rate parameter.

We write X ∼ Po(λ) to represent this random variable. We can show that

E[X] = V ar[X] = λ.
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Discrete distributions Poisson

Poisson probability mass function

Customers of an internet service provider initiate new accounts at the average rate of 10
accounts per day. What is the probability that more than 8 new accounts will be initiated
today?

0.00

0.04

0.08

0.12

0 10 20 30
Value

P
ro

ba
bi

lit
y 

m
as

s 
fu

nc
tio

n

Poisson pmf with mean of 10

(STAT5870@ISU) P2 - Discrete Random Variables November 22, 2024 38 / 45



Discrete distributions Poisson

Poisson probability

Customers of an internet service provider initiate new accounts at the average rate of 10 accounts per
day. What is the probability that more than 8 new accounts will be initiated today?

Let X be the number of accounts initiated today. Assume X ∼ Po(10).

P (X > 8) = 1− P (X ≤ 8) = 1−

8
∑

x=0

λxe−λ

x!
≈ 1− 0.333 = 0.667

In R,

# Using pmf

1 - sum(dpois(0:8, lambda = 10))

[1] 0.6671803

# Using cdf

1 - ppois(8, lambda = 10)

[1] 0.6671803
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Discrete distributions Poisson

Sum of Poisson random variables

Let Xi
ind
∼ Po(λi) for i = 1, . . . , n. Then

Y =

n
∑

i=1

Xi ∼ Po

(

n
∑

i=1

λi

)

.

Let Xi
iid
∼ Po(λ) for i = 1, . . . , n. Then

Y =
n
∑

i=1

Xi ∼ Po (nλ) .
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Discrete distributions Poisson

Poisson random variable - example

Customers of an internet service provider initiate new accounts at the average rate of 10 accounts per
day. What is the probability that more than 16 new accounts will be initiated in the next two days?

Since the rate is 10/day, then for two days we expect, on average, to have 20. Let Y be he number
initiated in a two-day period. If we assume the number of new accounts each day is independent and
each day is a Poisson with rate 10, then Y ∼ Po(20). Then

P (Y > 16) = 1− P (Y ≤ 16)

= 1−
∑16

y=0

λye−λ

y!

= 1− 0.221 = 0.779.

In R,

# Using pmf

1 - sum(dpois(0:16, lambda = 20))

[1] 0.7789258

# Using cdf

1 - ppois(16, lambda = 20)

[1] 0.7789258
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Discrete distributions Poisson approximation to a binomial

Manufacturing example

A manufacturer produces 100 chips per day and, on average, 1% of these chips are defective.
What is the probability that no defectives are found in a particular day?

Let X represent the number of defectives and assume X ∼ Bin(100, 0.01). Then

P (X = 0) =

(

100

0

)

(0.01)0(1− 0.01)100 ≈ 0.366.

Alternatively, let Y represent the number of defectives
and assume Y ∼ Po(100× 0.01). Then

P (Y = 0) =
10e−1

0!
≈ 0.368.
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Discrete distributions Poisson approximation to a binomial

Poisson approximation to the binomial

Suppose we have X ∼ Bin(n, p) with n large (say ≥ 20) and p small (say ≤ 0.05). We can
approximate X by Y ∼ Po(np) because for large n and small p

(

n

k

)

pk(1− p)n−k ≈ e−np (np)
k

k!
.
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Discrete distributions Poisson approximation to a binomial

Example

Imagine you are supposed to proofread a paper. Let us assume that there are on average 2
typos on a page and a page has 1000 words. This gives a probability of 0.002 for each word to
contain a typo. What is the probability the page has no typos?

Let X represent the number of typos on the page and assume X ∼ Bin(1000, 0.002).
P (X = 0) using R is

n = 1000; p = 0.002

dbinom(0, size = n, prob = p)

[1] 0.1350645

Alternatively, let Y represent the number of defectives and assume Y ∼ Po(1000× 0.002).
P (Y = 0) using R is

dpois(0, lambda = n*p)

[1] 0.1353353
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Discrete distributions Poisson approximation to a binomial

Summary

General discrete random variables

Probability mass function (pmf)
Cumulative distribution function (cdf)
Expected value
Variance
Standard deviation

Specific discrete random variables

Bernoulli
Binomial
Poisson
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Continuous random variables

Continuous vs discrete random variables

Discrete random variables have

finite or countable support and

pmf: P (X = x).

Continuous random variables have

uncountable support and

P (X = x) = 0 for all x.

(STAT5870@ISU) P3 - Continuous random variables November 22, 2024 2 / 22



Continuous random variables Cumulative distribution function

Cumulative distribution function

The cumulative distribution function for a continuous random variable is

FX(x) = P (X ≤ x) = P (X < x)

since P (X = x) = 0 for any x.

The cdf still has the properties

0 ≤ FX(x) ≤ 1 for all x ∈ R,

FX is monotone increasing,
i.e. if x1 ≤ x2 then FX(x1) ≤ FX(x2), and

limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.
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Continuous random variables Probability density functions

Probability density function

The probability density function (pdf) for a continuous random variable is

fX(x) =
d

dx
FX(x)

and

FX(x) =

∫ x

−∞

fX(t)dt.

Thus, the pdf has the following properties

fX(x) ≥ 0 for all x and
∫∞

−∞
f(x)dx = 1.
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Continuous random variables Example

Example

Let X be a random variable with probability density function

fX(x) =

{

3x2 if 0 < x < 1
0 otherwise.

fX(x) defines a valid pdf because fX(x) ≥ 0 for all x and

∫ ∞

−∞

fX(x)dx =

∫ 1

0
3x2dx = x3|10 = 1.

The cdf is

FX(x) =







0 x ≤ 0
x3 0 < x < 1
1 x ≥ 1

.
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Continuous random variables Expectation

Expected value

Let X be a continuous random variable and h be some function. The expected value of a
function of a continuous random variable is

E[h(X)] =

∫ ∞

−∞

h(x) · fX(x)dx.

If h(x) = x, then

E[X] =

∫ ∞

−∞

x · fX(x)dx.

and we call this the expectation of X. We commonly use the symbol µ for this expectation.
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Continuous random variables Expectation

Example (cont.)

Let X be a random variable with probability density function

fX(x) =

{

3x2 if 0 < x < 1
0 otherwise.

The expected value is
E[X] =

∫∞

−∞
x · fX(x)dx

=
∫ 1
0 3x3dx

= 3x4

4 |10 = 3
4 .
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Continuous random variables Expectation

Example - Center of mass
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Continuous random variables Variance

Variance

The variance of a random variable is defined as the expected squared deviation from the mean.
For continuous random variables, variance is

V ar[X] = E[(X − µ)2] =

∫ ∞

−∞

(x− µ)2fX(x)dx

where µ = E[X]. The symbol σ2 is commonly used for the variance.

The standard deviation is the positive square root of the variance

SD[X] =
√

V ar[X].

The symbol σ is commonly used for the standard deviation.
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Continuous random variables Variance

Example (cont.)

Let X be a random variable with probability density function

fX(x) =

{

3x2 if 0 < x < 1
0 otherwise.

The variance is
V ar[X] =

∫∞

−∞
(x− µ)2 fX(x)dx

=
∫ 1
0

(

x− 3
4

)2
3x2dx

=
∫ 1
0

[

x2 − 3
2x+ 9

16

]

3x2dx

=
∫ 1
0 3x4 − 9

2x
3 + 27

16x
2dx

=
[

3
5x

5 − 9
8x

4 + 9
16x

3
]

|10dx
= 3

5 − 9
8 + 9

16
= 3

80 .
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Continuous random variables Comparison of discrete and continuous random variables

Comparison of discrete and continuous random variables

For simplicity here and later, we drop the subscript X.

discrete continuous
support (X ) finite or countable uncountable

pmf p(x) = P (X = x)

pdf p(x) = f(x) = F ′(x)

cdf
F (x) = P (X ≤ x)

=
∑

t≤x
p(t)

F (x) = P (X ≤ x) = P (X < x)
=

∫
x

−∞
p(t) dt

expected value E[h(X)] =
∑

x∈X h(x)p(x) E[h(X)] =
∫
X

h(x)p(x) dx

expectation µ = E[X] =
∑

x∈X x p(x) µ = E[X] =
∫
X

x p(x) dx

variance
σ2 = V ar[X] = E[(X − µ)2]

=
∑

x∈X (x− µ)2 p(x)
σ2 = V ar[X] = E[(X − µ)2]

=
∫
X
(x− µ)2 p(x) dx

Note: we replace summations with integrals when using continuous as opposed to discrete random
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Uniform

Uniform

A uniform random variable on the interval (a, b) has equal probability for any value in that interval and
we denote this X ∼ Unif(a, b). The pdf for a uniform random variable is

f(x) =
1

b− a
I(a < x < b)

where I(A) is in indicator function that is 1 if A is true and 0 otherwise, i.e.

I(A) =

{

1 A is true
0 otherwise.

The expectation and variance are

E[X] =

∫ b

a

x
1

b− a
dx =

a+ b

2
and V ar[X] =

∫ b

a

1

b− a

(

x− a+ b

2

)2

dx =
1

12
(b− a)2.
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Uniform Standard uniform

Standard uniform

A standard uniform random variable is X ∼ Unif(0, 1). This random variable has

E[X] =
1

2
and V ar[X] =

1

12
.
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Uniform Inverse CDF

Example (cont.)

Pseudo-random number generators generate pseudo uniform values on (0,1). These values can be used
in conjunction with the inverse of the cumulative distribution function to generate pseudo-random
numbers from any distribution.

The inverse of the cdf FX(x) = x3 is
F−1
X (u) = u1/3.

A uniform random number on the interval (0,1) generated using the inverse cdf produces a random
draw of X.

inverse_cdf = function(u) u^(1/3)

x = inverse_cdf(runif(1e6))

mean(x)

[1] 0.7502002

var(x)

[1] 0.03752111
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Uniform Inverse CDF

Histogram of x
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Normal

Normal random variable

The normal (or Gaussian) density is a “bell-shaped” curve. The density has two parameters: mean µ

and variance σ2 and is

f(x) =
1√
2πσ2

e−(x−µ)2/2σ2

for −∞ < x < ∞

If X ∼ N(µ, σ2), then

E[X] =
∫

∞

−∞
x f(x)dx = . . . = µ

V ar[X] =
∫

∞

−∞
(x− µ)2 f(x)dx = . . . = σ2.

Thus, the parameters µ and σ2 are actually the mean and the variance of the N(µ, σ2) distribution.

There is no closed form cumulative distribution function for a normal random variable.
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Normal Example pdfs

Example normal probability density functions
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mu= 1 , sigma= 2
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Normal Properties

Properties of normal random variables

Let Z ∼ N(0, 1), i.e. a standard normal random variable. Then for constants µ and σ

X = µ+ σZ ∼ N(µ, σ2)

and

Z =
X − µ

σ
∼ N(0, 1)

which is called standardizing.

Let Xi
ind∼ N(µi, σ

2
i ). Then

Zi =
Xi − µi

σi

iid∼ N(0, 1) for all i

and

Y =
n
∑

i=1

Xi ∼ N

(

n
∑

i=1

µi,

n
∑

i=1

σ2
i

)

.
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Normal Standard normal

Calculating the standard normal cdf

If Z ∼ N(0, 1), what is P (Z ≤ 1.5)? Although the cdf does not have a closed form, very good
approximations exist and are available as tables or in software, e.g.

pnorm(1.5) # default is mean=0, sd=1

[1] 0.9331928

If Z ∼ N(0, 1), then

P (Z ≤ z) = Φ(z)

Φ(z) = 1− Φ(−z) since a normal pdf is
symmetric around its mean.
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Normal Standard normal

Calculating any normal cumulative distribution function

If X ∼ N(15, 4) what is P (X > 18)?

P (X > 18) = 1− P (X ≤ 18)

= 1− P
(

X−15
2 ≤ 18−15

2

)

= 1− P (Z ≤ 1.5)
≈ 1− 0.933 = 0.067

1-pnorm((18-15)/2) # by standardizing

[1] 0.0668072

1-pnorm(18, mean = 15, sd = 2) # using the mean and sd arguments

[1] 0.0668072
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Normal Manufacturing example

Manufacturing

Suppose you are producing nails that must be within 5 and 6 centimeters in length.
If the average length of nails the process produces is 5.3 cm and the standard deviation is 0.1
cm. What is the probability the next nail produced is outside of the specification?

Let X ∼ N(5.3, 0.12) be the length (cm) of the next nail produced. We need to calculate

P (X < 5 or X > 6) = 1− P (5 < X < 6).

mu = 5.3

sigma = 0.1

1-diff(pnorm(c(5,6), mean = mu, sd = sigma))

[1] 0.001349898
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Normal Summary

Summary

Continuous random variables

Probability density function
Cumulative distribution function
Expectation
Variance

Specific distributions

Uniform
Normal (or Gaussian)
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P4 - Central Limit Theorem

STAT 5870 (Engineering)
Iowa State University

November 22, 2024

Main Idea: Sums and averages of iid random variables from any distribution have approximate

normal distributions for sufficiently large sample sizes.
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Bell-shaped curve

Bell-shaped curve

The term bell-shaped curve typically refers to the probability density function for a normal

random variable:

Value
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Bell−shaped curve
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Bell-shaped curve

Histograms of samples from bell-shaped curves
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Histograms of 1,000 standard normal random variables
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Bell-shaped curve

Yield

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184198
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Bell-shaped curve Examples

SAT scores

https://blogs.sas.com/content/iml/2019/03/04/visualize-sat-scores-nc.html
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Bell-shaped curve Examples

Histograms of samples from bell-shaped curves
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Bell-shaped curve Examples

Tensile strength

https://www.researchgate.net/figure/Comparison-of-histograms-for-BTS-and-tensile-strength-estimated-from-point-load_fig5_260617256
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Central Limit Theorem

Sums and averages of iid random variables

Suppose X1, X2, . . . are iid random variables with

E[Xi] = µ V ar[Xi] = σ2.

Define
Sample Sum: Sn = X1 +X2 + · · ·+Xn

Sample Average: Xn = Sn/n.

Using properties of expectations and variances, we can find

for Sn

E[Sn] = nµ, V ar[Sn] = nσ2, and SD[Sn] =
√
nσ

for Xn

E[Xn] = µ, V ar[Xn] = σ2/n, and SD[Xn] = σ/
√
n.
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Central Limit Theorem

Central Limit Theorem (CLT)

Suppose X1, X2, . . . are iid random variables with

E[Xi] = µ V ar[Xi] = σ2.

Define
Sample Sum: Sn = X1 +X2 + · · ·+Xn

Sample Average: Xn = Sn/n.

Then the Central Limit Theorem says

lim
n→∞

Xn − µ

σ/
√
n

d→ N(0, 1) and lim
n→∞

Sn − nµ
√
nσ

d→ N(0, 1).

Main Idea: Sums and averages of iid random variables from any distribution have approximate normal

distributions for sufficiently large sample sizes.
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Central Limit Theorem

Yield

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184198
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Central Limit Theorem Approximating distributions

Approximating distributions

Rather than considering the limit, I typically think of the following approximations as n gets large.

For the sample average,

Xn
·∼ N(µ, σ2/n).

where
·∼ indicates approximately distributed. Recall

E
[

Xn

]

= µ and V ar
[

Xn

]

= σ2/n.

For the sample sum,

Sn
·∼ N(nµ, nσ2).

Recall
E[Sn] = nµ

V ar[Sn] = nσ2.
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Central Limit Theorem Normal approximations to uniform

Averages and sums of uniforms

Let Xi

ind∼ Unif(0, 1). Then

µ = E[Xi] =
1

2
and σ2 = V ar[Xi] =

1

12
.

Thus

Xn

·∼ N

(

1

2
,

1

12n

)

and

Sn

·∼ N
(n

2
,
n

12

)

.
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Central Limit Theorem Normal approximations to uniform

Averages of uniforms

Histogram of d$mean
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Central Limit Theorem Normal approximations to uniform

Sums of uniforms

Histogram of d$sum
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Central Limit Theorem Normal approximation to a binomial

Normal approximation to a binomial

Recall if Yn =
∑n

i=1
Xi where Xi

ind∼ Ber(p), then

Yn ∼ Bin(n, p).

For a binomial random variable, we have

E[Yn] = np and V ar[Yn] = np(1− p).

By the CLT,

lim
n→∞

Yn − np
√

np(1− p)
→ N(0, 1).

If n is large,

Yn
·∼ N(np, np[1− p]).
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Central Limit Theorem Roulette example

Roulette example

A European roulette wheel has 39 slots: one green, 19 black, and 19 red. If I play black every time,

what is the probability that I will have won more than I lost after 99 spins of the wheel?

https://isorepublic.com/photo/roulette-wheel/
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Central Limit Theorem Roulette example

Roulette example

A European roulette wheel has 39 slots: one green, 19 black, and 19 red. If I play black every time,

what is the probability that I will have won more than I lost after 99 spins of the wheel?

Let Y indicate the total number of wins and assume Y ∼ Bin(n, p) with n = 99 and p = 19/39. The
desired probability is P (Y ≥ 50). Then

P (Y ≥ 50) = 1− P (Y < 50) = 1− P (Y ≤ 49)

n <- 99

p <- 19/39

1 - pbinom(49, n, p)

[1] 0.399048
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Central Limit Theorem Roulette example

Roulette example

A European roulette wheel has 39 slots: one green, 19 black, and 19 red. If I play black every time,

what is the probability that I will have won more than I lost after 99 spins of the wheel?

Let Y indicate the total number of wins. We can approximate Y using X ∼ N(np, np(1− p)).

P (Y ≥ 50) ≈ 1− P (X < 50)

1 - pnorm(50, n * p, sqrt( n * p * (1 - p) ) )

[1] 0.3610155

A better approximation can be found using a continuity correction.
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Central Limit Theorem Astronomy example

Astronomy example

An astronomer wants to measure the distance, d, from Earth to a star. Suppose the procedure

has a known standard deviation of 2 parsecs. The astronomer takes 30 iid measurements and

finds the average of these measurements to be 29.4 parsecs. What is the probability the

average is within 0.5 parsecs?

http://planetary-science.org/astronomy/distance-and-magnitudes/
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Central Limit Theorem Astronomy example

Astronomy example

Let Xi be the ith measurement. The astronomer assumes that X1, X2, . . . Xn are iid with

E[Xi] = d and V ar[Xi] = σ2 = 22. The estimate of d is

Xn =
(X1 +X2 + · · ·+Xn)

n
= 29.4.

and, by the Central Limit Theorem, Xn

·∼ N(d, σ2/n) where n = 30. We want to find

P
(

|Xn − d| < 0.5
)

= P
(

−0.5 < Xn − d < 0.5
)

= P

(

−0.5

2/
√

30
<

Xn−d
σ/

√

n
<

0.5

2/
√

30

)

≈ P (−1.37 < Z < 1.37)

diff(pnorm( c(-1.37, 1.37) ))

[1] 0.8293131
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Central Limit Theorem Astronomy example

Astronomy example - sample size

Suppose the astronomer wants to be within 0.5 parsecs with at least 95% probability. How many more

samples would she need to take?

We solve

0.95 ≤ P
(∣

∣Xn − d
∣

∣ < .5
)

= P
(

−0.5 < Xn − d < 0.5
)

= P
(

−0.5
2/

√
n
< Xn−d

σ/
√
n
< 0.5

2/
√
n

)

= P (−z < Z < z) z = 0.5/(2/
√
n)

= 1− [P (Z < −z) + P (Z > z)]
= 1− 2P (Z < −z)

where z = 1.96 since

1 - 2 * pnorm(-1.96)

[1] 0.9500042

and thus n = 61.47 which we round up to n = 62 to ensure the probability is at least 0.95.
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Central Limit Theorem Astronomy example

Summary

Central Limit Theorem

Sums

Averages

Examples

Uniforms
Binomial

Roulette

Sample size

Astronomy
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Multiple random variables Discrete random variables

Multiple discrete random variables

If X and Y are two discrete variables, their joint probability mass function is defined as

pX,Y (x, y) = P (X = x ∩ Y = y) = P (X = x, Y = y).
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Multiple random variables Discrete random variables

CPU example

A box contains 5 PowerPC G4 processors of different speeds:

# speed

2 400 mHz
1 450 mHz
2 500 mHz

Randomly select two processors out of the box (without replacement) and let

X be speed of the first selected processor and

Y be speed of the second selected processor.
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Multiple random variables Discrete random variables

CPU example - outcomes

1st processor (X)
Ω 4001 4002 450 5001 5002
4001 - x x x x
4002 x - x x x

2nd processor (Y ) 450 x x - x x
5001 x x x - x
5002 x x x x -

Reasonable to believe each outcome is equally probable.
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Multiple random variables Discrete random variables

CPU example - joint pmf

Joint probability mass function for X and Y :

1st processor (X)
mHz 400 450 500

400 2/20 2/20 4/20
2nd processor (Y ) 450 2/20 0/20 2/20

500 4/20 2/20 2/20

What is P (X = Y )?

What is P (X > Y )?
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Multiple random variables Discrete random variables

CPU example - probabilities

What is the probability that X = Y ?

P (X = Y )
= pX,Y (400, 400) + pX,Y (450, 450) + pX,Y (500, 500)
= 2/20 + 0/20 + 2/20 = 4/20 = 0.2

What is the probability that X > Y ?

P (X > Y )
= pX,Y (450, 400) + pX,Y (500, 400) + pX,Y (500, 450)
= 2/20 + 4/20 + 2/20 = 8/20 = 0.4
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Multiple random variables Marginal distribution

Marginal distribution

For discrete random variables X and Y , the marginal probability mass functions are

pX(x) =
∑

y pX,Y (x, y) and

pY (y) =
∑

x pX,Y (x, y)
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Multiple random variables Marginal distribution

Marginal distribution

Joint probability mass function for X and Y :

1st processor (X)
mHz 400 450 500
400 2/20 2/20 4/20

2nd processor (Y ) 450 2/20 0/20 2/20
500 4/20 2/20 2/20

Summing the rows within each column provides

x 400 450 500
pX(x) 0.4 0.2 0.4

Summing the columns within each row provides

y 400 450 500
pY (y) 0.4 0.2 0.4
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Multiple random variables Independence

CPU example - independence

Are X and Y independent?

X and Y are independent if px,y(x, y) = pX(x)pY (y) for all x and y.

Since
pX,Y (450, 450) = 0 ̸= 0.2 · 0.2 = pX(450) · pY (450)

they are not independent.
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Multiple random variables Expectations

Expectation

The expected value of a function h(x, y) is

E[h(X,Y )] =
∑

x,y

h(x, y) pX,Y (x, y).
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Multiple random variables Expectations

CPU example - expected absolute speed difference

What is E[|X − Y |]?

Here, we have the situation E[|X − Y |] = E[h(X,Y )], with h(X,Y ) = |X − Y |. Thus, we
have

E[|X − Y |]
=
∑

x,y |x− y| pX,Y (x, y) =

=|400− 400| · 0.1 + |400− 450| · 0.1 + |400− 500| · 0.2
+|450− 400| · 0.1 + |450− 450| · 0.0 + |450− 500| · 0.1
+|500− 400| · 0.2 + |500− 450| · 0.1 + |500− 500| · 0.1

=0 + 5 + 20 + 5 + 0 + 5 + 20 + 5 + 0 = 60.
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Multiple random variables Covariance

Covariance

The covariance between two random variables X and Y is

Cov[X,Y ] = E[(X − µX)(Y − µY )]

where
µX = E[X] and µY = E[X].

If Y = X in the above definition, then
Cov[X,X] = V ar[X].
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Multiple random variables Covariance

CPU example - covariance

Use marginal pmfs to compute:

E[X] = E[Y ] = 450 and V ar[X] = V ar[Y ] = 2000.

The covariance between X and Y is:

Cov[X,Y ]
=

∑

x,y(x− E[X])(y − E[Y ])pX,Y (x, y) =

= (400− 450)(400− 450) · 0.1
+(450− 450)(400− 450) · 0.1
+ · · ·
+(500− 450)(500− 450) · 0.1

= 250 + 0− 500 + 0 + 0 + 0− 500 + 250 + 0
= −500.
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Multiple random variables Correlation

Correlation

The correlation between two variables X and Y is

ρ[X,Y ] =
Cov[X,Y ]

√

V ar[X] · V ar[Y ]
=

Cov[X,Y ]

SD[X] · SD[Y ]
.
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Multiple random variables Correlation

Correlation properties

ρ is between -1 and 1

if ρ = 1 or -1, Y is a linear function of X:

ρ = 1 =⇒ Y = mX + b with m > 0,
ρ = −1 =⇒ Y = mX + b with m < 0,

ρ is a measure of linear association between X and Y

ρ near ±1 indicates a strong linear relationship,
ρ near 0 indicates a lack of linear association.
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Multiple random variables Correlation

CPU example - correlation

Recall
Cov[X,Y ] = −500 and V ar[X] = V ar[Y ] = 2000.

The correlation is

ρ[X,Y ] =
Cov[X,Y ]

√

V ar[X] · V ar[Y ]
=

−500√
2000 · 2000

= −0.25,

and thus there is a weak negative (linear) association.
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Multiple random variables Continuous random variables

Continuous random variables

Suppose X and Y are two continuous random variables with joint probability density function
pX,Y (x, y). Probabilities are calculated by integrating this function. For example,

P (a < X < b, c < Y < d) =

∫ d

c

∫ b

a

pX,Y (x, y) dx dy.

Then the marginal probability density functions are

pX(x) =
∫

pX,Y (x, y) dy
pY (y) =

∫

pX,Y (x, y) dx.
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Multiple random variables Continuous random variables

Continuous random variables

Two continuous random variables are independent if

pX,Y (x, y) = pX(x) pY (y).

The expected value of h(X,Y ) is

E[h(X,Y )] =

∫ ∫

h(x, y) pX,Y (x, y) dx dy.
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Multiple random variables Properties of variances and covariances

Properties of variances and covariances

For any random variables X, Y , W and Z,

V ar[aX + bY + c] = a2V ar[X] + b2V ar[Y ] + 2abCov[X,Y ]

Cov[aX + bY, cZ + dW ] = acCov[X,Z] + adCov[X,W ]
+bcCov[Y, Z] + bdCov[Y,W ]

Cov[X,Y ] = Cov[Y,X]
ρ[X,Y ] = ρ[Y,X]

If X and Y are independent, then

Cov[X,Y ] = 0
V ar[aX + bY + c] = a2V ar[X] + b2V ar[Y ].
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Multiple random variables Properties of variances and covariances

Summary

Multiple random variables

joint probability mass function
marginal probability mass function
joint probability density function
marginal probability density function
expected value
covariance
correlation
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