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Stochastic kinetic models Terminology

Stochastic kinetic models

Imagine a well-mixed system in thermal equilibrium with

N species: S1, . . . , SN with

number of molecules X1, . . . , XN with elements Xj ∈ Z+

which change according to M reactions: R1, . . . , RM with

propensities a1(x), . . . , aM (x).

The propensities are given by aj(x) = θjhj(x)

where hj(x) is a known function of the system state.

If reaction j occurs, the state is updated by the stoichiometry νj with

elements νij ∈ {−2,−1, 0, 1, 2}, i.e. reaction orders 0,1, and 2.
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Stochastic kinetic models Terminology

Michaelis-Menton System

The Michaelis-Menton system has N = 4 species:

Substrate (S),

Enzyme (E),

Substrate-Enzyme Complex (SE), and

Product (P).

The M = 3 reactions as well as their propensities and stoichiometries are

Stoichiometry
Reaction Propensity S E SE P

S + E −→ SE θ1XSXE -1 -1 1
SE −→ S + E θ2XSE 1 1 -1
SE −→ P+E θ3XSE 1 -1 1

where θ = (θ1, θ2, θ3) is the parameter of interest.
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Stochastic kinetic models Terminology

Michaelis-Menton snapshot
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Stochastic kinetic models Gillespie algorithm

Gillespie algorithm

If reaction j ∈ {1, . . . ,M} has the following probability

lim
dt→0

P (reaction j within the interval (t, t+ dt)|Xt) = aj(Xt)dt,

then this defines a continuous-time Markov jump process.

Then a realization from this model can be obtained using the Gillespie
algorithm:

1. For j ∈ {1, . . . ,M}, calculate aj(Xt).

2. Calculate a0(Xt) =
∑M

j=1 aj(Xt).
3. Simulate a reaction time τ ∼ Exp(a0(Xt))
4. Simulate a reaction id k ∈ {1, . . . ,M} with probability ak(Xt)/a0(Xt)
5. Update X according to vk and time by τ .
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Stochastic kinetic models Gillespie algorithm

Michaelis-Menton Gillespie Simulation
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Stochastic kinetic models Complete observations

Complete observations

Suppose you observe all system transitions:

n reactions occur in the interval [0, T ]

t1, . . . , tn are the reaction times

r1, . . . , rn are the reaction indicators, ri ∈ {1, . . . ,M}

Then inference can be performed based on the likelihood

L(θ) ∝
M∏
j=1

θ
nj

j exp (−θjIj)

where

nj =
∑n

i=1 I(ri = j) # of j reactions

Ij =
∫ T
0 hj(Xt)dt =

∑n
i=1 hj(Xti−1)(ti − ti−1) + hj(Xtn)[T − tn]
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Stochastic kinetic models Inference

Inference

Maximum likelihood estimation

θ̂j =
nj
Ij

Conjugate Bayesian inference

p(θ) =
∏M
j=1Ga(θj ; aj , bj)

p(θ|X) =
∏M
j=1Ga(θj ; aj + nj , bj + Ij)

E[θj |X] =
aj+nj

bj+Ij
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Stochastic kinetic models Inference

Michaelis-Menton Complete Data Inference
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Stochastic kinetic models Discrete observations

Discrete observations

Suppose you only observe the system at discrete-times:

For simplicity, observe the system at times t = 1, 2, . . . , T .

At these times, we observe yt = Xt the system state.

But do not observe the system between these times.
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Stochastic kinetic models Discrete observations

Michaelis-Mention discrete observations
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Stochastic kinetic models Inference

Inference

Inference is still performed based on the likelihood

L(θ) = p(y|θ) = p(t, y)

but this is the solution to the chemical master equation

∂

∂t
p(t, y) =

M∑
j=1

(
aj(y − vm)p(t, y − vm)− aj(y)p(t, y)

)

For constitutive production h(Xt) = 1 and a(Xt) = θ, we still have

L(θ) ∝ θn exp (−θI)

with

n = yT − y0 I =

∫ T

0
1dt = T
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Stochastic kinetic models Reversible isomerization

Reversible isomerization
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Stochastic kinetic models Summary

Summary

With complete observations and independent gamma priors, the
posterior is

p(θ|X) =

M∏
j=1

Ga(θj ; aj + nj , bj + Ij)

where

nj =
∑n

i=1 I(ri = j)

Ij =
∫ T
0 hj(Xt)dt =

∑n
i=1 hj(Xti−1)(ti − ti−1) + hj(Xtn)[T − tn]

For discrete observations, the likelihood is analytically intractable and
therefore no closed form exists for the posterior (or MLEs).
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Sampling methods

The idea

But we can simulate from the model using the Gillespie algorithm!!

Intuitively, if we

1. pick a set of parameters,
2. simulate a realization using these parameters,
3. and it matches our data,
4. then these parameters should be reasonable.

Our goal is to formalize this through

1. Rejection sampling

2. Gibbs sampling
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Sampling methods

Simulations from the prior
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Sampling methods Rejection sampling

Rejection sampling

Our objective is samples from the posterior

p(θ|y) =
∫
p(θ,X|y)dX ∝

∫
p(y|X)p(X|θ)p(θ)dX

=
∫ ∏n

t=1 I(yt = Xt)p(X|θ)p(θ)dX

A rejection sampling procedure is

1. Sample θ ∼ p(θ).
2. Sample X ∼ p(X|θ) a.k.a. Gillespie

3. If yt = Xt for t = 1, 2, . . . , T , then

4. θ is a sample from p(θ|y) and

5. θ,X is a sample from p(θ,X|y).
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Sampling methods Gibbs sampling

Gibbs sampling

Our objective is samples from the posterior

p(θ|y) =
∫
p(θ,X|y)dX ∝

∫
p(y|X)p(X|θ)p(θ)dX

A Gibbs sampling procedure is

1. Start with θ(0), X(0)

2. For k = 1, . . . ,K,

a. Sample θ(k) ∼ p(θ|X(k−1))
b. Sample X(k) ∼ p(X|θ(k), y) a.k.a. rejection sampling

θ(k), X(k) converge to samples from p(θ,X|y)
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Approximate Bayesian computation

An approximate posterior

Intuitively, if we

1. pick a set of parameters,
2. simulate a realization using these parameters,
3. and it is similar to our data,
4. then these parameters should be reasonable.

We can formalize this using

Approximate Bayesian computation
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Approximate Bayesian computation The Approximation

Approximate Bayesian computation (ABC)

Our approximate objective is samples from the posterior

p(θ|y) =
∫
p(θ,X|ρ ≤ ε)dX ∝

∫
I(ρ ≤ ε)p(X|θ)p(θ)dX

where ρ = ρ(y,X) is a measure of the difference between your data y and
simulations X.

Choice of ε reflects tension between computability and accuracy.
As ε→∞,

p(θ|ρ ≤ ε) d→ p(θ)
acceptance probability converges to 1

As ε→ 0,

p(θ|ρ ≤ ε) d→ p(θ|y)
acceptance probability decreases
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Approximate Bayesian computation ABC rejection sampling

ABC rejection sampling

Let ρ =
∑n

t=1 |yt −Xt| and ε = n,

An ABC rejection sampling procedure is

1. Sample θ ∼ p(θ)
2. Sample X ∼ p(X|θ) a.k.a. Gillespie

3. If ρ(y,X) ≤ ε, then

4. θ is a sample from p(θ|ρ ≤ ε) and

5. θ,X is a sample from p(θ,X|ρ ≤ ε).
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Approximate Bayesian computation ABC Gibbs sampling

ABC Gibbs sampling

Let ρ =
∑n

t=1 |yt −Xt| and ε = n,

A Gibbs sampling procedure is

1. Start with θ(0), X(0)

2. For k = 1, . . . ,K,

a. Sample θ(k) ∼ p(θ|X(k−1))
b. Sample X(k) ∼ p(X|θ(k), ρ ≤ ε) a.k.a. rejection sampling

θ(k), X(k) converge to samples from p(θ,X|ρ ≤ ε)

Jarad Niemi (STAT615@ISU) Approximate Bayesian Computation December 5, 2017 23 / 27



Approximate Bayesian computation Gibbs sampling example

Michaelis-Menton system

E + S
θ1−⇀↽−
θ2
ES

θ3−→ E + P

Table: Measurements taken from a simulated Michaelis-Mention
system with parameters θ1 = 0.001, θ2 = 0.2, and θ3 = 0.1.

Time 0 10 20 30 40 50 60 70 80 90 100

E 120 71 76 81 80 90 90 104 103 109 109
S 301 219 180 150 108 86 61 52 35 29 22
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Approximate Bayesian computation Gibbs sampling example

With ε = 0 (i.e. draws from p(θ|y)),
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Approximate Bayesian computation Gibbs sampling example

Since rejection sampling is inherently parallel, run this algorithm on a
graphical processing unit:

10
20

50
10

0
20

0

Expected samples (log10)

C
P

U
/G

P
U

 s
ys

te
m

 ti
m

e

3 4 5 6

0.
01

0.
1

0.
5

G
P

U
 ti

m
e 

pe
r 

ite
ra

tio
n 

(s
ec

on
ds

)

Jarad Niemi (STAT615@ISU) Approximate Bayesian Computation December 5, 2017 26 / 27



Summary

Summary

Bayesian inference in discretely observed SCKMs

Goal: p(θ|y) ∝ p(y|θ)p(θ)
Likelihood, L(θ) = p(y|θ), is analytically intractable
Sampling methods are required, e.g. rejection and/or Gibbs
Acceptance rate can be unacceptably low

Approximate Bayesian computation (ABC) in SCKMs

Goal: p(θ|ρ ≤ ε) ∝ p(ρ ≤ ε|θ)p(θ)
ρ = ρ(y,X) measures the difference between data and a simulation
ε balances computability with accuracy
Readily accommodates bounded errors, e.g. yt = Xt ± ε

ABC generally

More general than SKMs, e.g. phylogenetic trees
Building ρ is an art, often use sufficient statistics of the data
Not useful for unbounded errors, e.g. yt = Xt + εt, εt ∼ N(0, σ2)
Current debate about usefulness for model selection
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