Approximate Bayesian Computation

Dr. Jarad Niemi

STAT 615 - Iowa State University

December 5, 2017

Outline

- Stochastic kinetic models
- Approximate Bayesian computation

Stochastic kinetic models

Imagine a well-mixed system in thermal equilibrium with

- N species: S_1, \ldots, S_N with
- number of molecules X_1, \ldots, X_N with elements $X_j \in \mathbb{Z}^+$
- which change according to M reactions: R_1, \ldots, R_M with
- propensities $a_1(x), \ldots, a_M(x)$.
- The propensities are given by $a_j(x)=\theta_j h_j(x)$
- where $h_j(x)$ is a known function of the system state.
- If reaction j occurs, the state is updated by the stoichiometry u_j with
- elements $\nu_{ij} \in \{-2, -1, 0, 1, 2\}$, i.e. reaction orders 0,1, and 2.

Michaelis-Menton System

The Michaelis-Menton system has N = 4 species:

- Substrate (S),
- Enzyme (E),
- Substrate-Enzyme Complex (SE), and
- Product (P).

The M = 3 reactions as well as their propensities and stoichiometries are

			Stoichiometry			
Reaction		Propensity	S	Е	SE	Ρ
S + E	$\longrightarrow SE$	$\theta_1 X_S X_E$	-1	-1	1	
SE	$\longrightarrow S + E$	$\theta_2 X_{SE}$	1	1	-1	
SE	$\longrightarrow P+E$	$\theta_3 X_{SE}$		1	-1	1

where $\theta = (\theta_1, \theta_2, \theta_3)$ is the parameter of interest.

Michaelis-Menton snapshot

Gillespie algorithm

 $\bullet~$ If reaction $j\in\{1,\ldots,M\}$ has the following probability

 $\lim_{dt\to 0} P(\text{reaction } j \text{ within the interval } (t,t+dt)|X_t) = a_j(X_t)dt,$

then this defines a continuous-time Markov jump process.

- Then a realization from this model can be obtained using the Gillespie algorithm:
 - 1. For $j \in \{1, \ldots, M\}$, calculate $a_j(X_t)$.
 - 2. Calculate $a_0(X_t) = \sum_{j=1}^{M} a_j(X_t)$.
 - 3. Simulate a reaction time $\tau \sim Exp(a_0(X_t))$
 - 4. Simulate a reaction id $k \in \{1, \ldots, M\}$ with probability $a_k(X_t)/a_0(X_t)$
 - 5. Update X according to v_k and time by τ .

Michaelis-Menton Gillespie Simulation

species - S ---- SE - - P

Complete observations

Suppose you observe all system transitions:

- n reactions occur in the interval [0,T]
- t_1, \ldots, t_n are the reaction times
- r_1, \ldots, r_n are the reaction indicators, $r_i \in \{1, \ldots, M\}$

Then inference can be performed based on the likelihood

$$L(\theta) \propto \prod_{j=1}^{M} \theta_j^{n_j} \exp\left(-\theta_j I_j\right)$$

where

$$n_j = \sum_{i=1}^n \mathrm{I}(r_i = j) \# \text{ of } j \text{ reactions}$$

$$I_j = \int_0^T h_j(X_t) dt = \sum_{i=1}^n h_j(X_{t_{i-1}})(t_i - t_{i-1}) + h_j(X_{t_n})[T - t_n]$$

Inference

• Maximum likelihood estimation

$$\hat{\theta}_j = \frac{n_j}{I_j}$$

• Conjugate Bayesian inference

$$p(\theta) = \prod_{j=1}^{M} Ga(\theta_j; a_j, b_j)$$

$$p(\theta|X) = \prod_{j=1}^{M} Ga(\theta_j; a_j + n_j, b_j + I_j)$$

$$E[\theta_j|X] = \frac{a_j + n_j}{b_j + I_j}$$

Michaelis-Menton Complete Data Inference

reaction - S+E->E ···· S+E<-SE --· SE->P

Discrete observations

Suppose you only observe the system at discrete-times:

- For simplicity, observe the system at times $t = 1, 2, \ldots, T$.
- At these times, we observe $y_t = X_t$ the system state.
- But do not observe the system between these times.

Michaelis-Mention discrete observations

Inference

Inference is still performed based on the likelihood

$$L(\theta) = p(y|\theta) = p(t,y)$$

but this is the solution to the chemical master equation

$$\frac{\partial}{\partial t}p(t,y) = \sum_{j=1}^{M} \left(a_j(y-v_m)p(t,y-v_m) - a_j(y)p(t,y) \right)$$

For constitutive production $h(X_t) = 1$ and $a(X_t) = \theta$, we still have

$$L(\theta) \propto \theta^n \exp\left(-\theta I\right)$$

with

$$n = y_T - y_0 \qquad I = \int_0^T 1 dt = T$$

Jarad Niemi (STAT615@ISU)

Approximate Bayesian Computation

Reversible isomerization

species • S 🔺 E • SE + P

• How many reactions occurred in the interval [30,31]? • What is $\int_{30}^{31} X_{SE} dt?$

Summary

• With complete observations and independent gamma priors, the posterior is

$$p(\theta|X) = \prod_{j=1}^{M} Ga(\theta_j; a_j + n_j, b_j + I_j)$$

where

$$n_{j} = \sum_{i=1}^{n} I(r_{i} = j)$$

$$I_{j} = \int_{0}^{T} h_{j}(X_{t}) dt = \sum_{i=1}^{n} h_{j}(X_{t_{i-1}})(t_{i} - t_{i-1}) + h_{j}(X_{t_{n}})[T - t_{n}]$$

• For discrete observations, the likelihood is analytically intractable and therefore no closed form exists for the posterior (or MLEs).

The idea

- But we can simulate from the model using the Gillespie algorithm!!
- Intuitively, if we
 - 1. pick a set of parameters,
 - 2. simulate a realization using these parameters,
 - 3. and it matches our data,
 - 4. then these parameters should be reasonable.

Our goal is to formalize this through

- 1. Rejection sampling
- 2. Gibbs sampling

Simulations from the prior

Rejection sampling

Our objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|y) dX \propto \int p(y|X) p(X|\theta) p(\theta) dX$$

=
$$\int \prod_{t=1}^{n} \mathbf{I}(y_t = X_t) p(X|\theta) p(\theta) dX$$

A rejection sampling procedure is

1. Sample
$$\theta \sim p(\theta)$$
.

2. Sample
$$X \sim p(X|\theta)$$
 a.k.a. Gillespie

3. If
$$y_t = X_t$$
 for $t = 1, 2, \dots, T$, then

- 4. θ is a sample from $p(\theta|y)$ and
- 5. θ, X is a sample from $p(\theta, X|y)$.

Gibbs sampling

Our objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|y) dX \propto \int p(y|X) p(X|\theta) p(\theta) dX$$

A Gibbs sampling procedure is

- 1. Start with $\theta^{(0)}, X^{(0)}$
- 2. For k = 1, ..., K,
 - a. Sample $\theta^{(k)} \sim p(\theta | X^{(k-1)})$
 - b. Sample $X^{(k)} \sim p(X|\theta^{(k)},y)$ a.k.a. rejection sampling

$$heta^{(k)}, X^{(k)}$$
 converge to samples from $p(heta, X|y)$

An approximate posterior

Intuitively, if we

- 1. pick a set of parameters,
- 2. simulate a realization using these parameters,
- 3. and it is similar to our data,
- 4. then these parameters should be reasonable.
- We can formalize this using
 - Approximate Bayesian computation

Approximate Bayesian computation (ABC)

Our approximate objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|\rho \le \epsilon) dX \propto \int \mathbf{I}(\rho \le \epsilon) p(X|\theta) p(\theta) dX$$

where $\rho=\rho(y,X)$ is a measure of the difference between your data y and simulations X.

• Choice of ϵ reflects tension between computability and accuracy.

• As
$$\epsilon \to \infty$$
,
• $p(\theta|\rho \le \epsilon) \stackrel{d}{\to} p(\theta|\theta)$

• acceptance probability converges to 1

• As
$$\epsilon \to 0$$
,

•
$$p(\theta|\rho \le \epsilon) \stackrel{d}{\to} p(\theta|y)$$

• acceptance probability decreases

ABC rejection sampling

Let
$$ho = \sum_{t=1}^n |y_t - X_t|$$
 and $\epsilon = n$,

An ABC rejection sampling procedure is

- 1. Sample $\theta \sim p(\theta)$
- 2. Sample $X \sim p(X|\theta)$ a.k.a. Gillespie
- 3. If $\rho(y, X) \leq \epsilon$, then
- 4. θ is a sample from $p(\theta|\rho \leq \epsilon)$ and
- 5. θ, X is a sample from $p(\theta, X | \rho \leq \epsilon)$.

ABC Gibbs sampling

Let
$$ho = \sum_{t=1}^n |y_t - X_t|$$
 and $\epsilon = n$,

A Gibbs sampling procedure is

1. Start with $\theta^{(0)}, X^{(0)}$

$$\begin{array}{ll} \text{2. For } k=1,\ldots,K,\\ \text{a. Sample } \theta^{(k)}\sim p(\theta|X^{(k-1)})\\ \text{b. Sample } X^{(k)}\sim p(X|\theta^{(k)},\rho\leq\epsilon) \text{ a.k.a. rejection sampling} \end{array}$$

 $\theta^{(k)}, X^{(k)}$ converge to samples from $p(\theta, X | \rho \leq \epsilon)$

Michaelis-Menton system

$$E + S \xrightarrow[\theta_2]{\theta_1} ES \xrightarrow[\theta_3]{\theta_3} E + P$$

Table: Measurements taken from a simulated Michaelis-Mention system with parameters $\theta_1 = 0.001$, $\theta_2 = 0.2$, and $\theta_3 = 0.1$.

Time	0	10	20	30	40	50	60	70	80	90	100
E	120	71	76	81	80	90	90	104	103	109	109
S	301	219	180	150	108	86	61	52	35	29	22

With $\epsilon = 0$ (i.e. draws from $p(\theta|y)$),

Since rejection sampling is inherently parallel, run this algorithm on a graphical processing unit:

Summary

- Bayesian inference in discretely observed SCKMs
 - Goal: $p(\theta|y) \propto p(y|\theta)p(\theta)$
 - Likelihood, $L(\theta) = p(y|\theta),$ is analytically intractable
 - Sampling methods are required, e.g. rejection and/or Gibbs
 - Acceptance rate can be unacceptably low
- Approximate Bayesian computation (ABC) in SCKMs

• Goal:
$$p(\theta|\rho \leq \epsilon) \propto p(\rho \leq \epsilon|\theta)p(\theta)$$

- $\rho=\rho(y,X)$ measures the difference between data and a simulation
- $\bullet \ \epsilon$ balances computability with accuracy
- Readily accommodates bounded errors, e.g. $y_t = X_t \pm \epsilon$
- ABC generally
 - More general than SKMs, e.g. phylogenetic trees
 - $\bullet\,$ Building ρ is an art, often use sufficient statistics of the data
 - Not useful for unbounded errors, e.g. $y_t = X_t + \epsilon_t, \epsilon_t \sim N(0,\sigma^2)$
 - Current debate about usefulness for model selection