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Dynamic linear models Structure, notation, and terminology

Structure

Yt = Ftθt + vt vt
ind∼ Nm(0, Vt)

θt = Gtθt−1 + wt wt
ind∼ Np(0,Wt)

θ0 ∼ Np(m0, C0)

where vt and wt are independent across time and all are independent of θ0.

  

θt-1 θt θt+1

Yt-1 Yt Yt+1
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Dynamic linear models Local level model

Local level model

Yt = θt + vt vt
ind∼ N1(0, V )

θt = θt−1 + wt wt
ind∼ N1(0,W )

θ0 ∼ N1(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Idea

Kalman filter idea

Goal: obtain p(θt|y1:t)

Recursive procedure:

Assume p(θt−1|y1:t−1)

p(θt−1|y1:t−1) = N(mt−1, Ct−1)

Prior for θt

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
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Kalman filtering The hard way

Prior for θt

p(θt|y1:t−1) =

∫
N(θt;Gtθt−1,Wt)N(θt−1;mt−1, Ct−1)dθt−1

=

∫
1

(2π)p/2|Wt|1/2
exp

(
−

1

2
(θt − Gtθt−1)

⊤
W

−1
t (θt − Gtθt−1)

)
1

(2π)p/2|Ct−1|1/2
exp

(
−

1

2
(θt−1 − mt−1)

⊤
C

−1
t−1(θt−1 − mt−1)

)
dθt−1

= N(at, Rt)

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt

=

∫
N(yt;Ftθt, Vt)N(θt; at, Rt)dθt

=

∫
1

(2π)m/2|Vt|1/2
exp

(
−

1

2
(yt − Ftθt)

⊤
V

−1
t (yt − Ftθt)

)
1

(2π)p/2|Rt|1/2
exp

(
−

1

2
(θt − at)

⊤
R

−1
t (θt − at)

)
dθt

= N(ft, Qt)

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
=

N(yt;Ftθt, Vt)N(θt; at, Rt)

N(yt; ft, Qt)

= N(mt, Ct)
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Kalman filtering Kalman filter

Latent state prior

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1). Find p(θt|y1:t−1).

Evolution equation: θt = Gtθt−1 + wt where wt
ind∼ Np(0,Wt)

(independent of p(θt−1|y1:t−1).

CONAN =⇒ θt|y1:t−1 is normal

E[θt|y1:t−1] = Gtmt−1 = at

V ar[θt|y1:t−1] = GtCt−1G
⊤
t +Wt = Rt

p(θt|y1:t−1) = N(at, Rt).
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Kalman filtering Kalman filter

One-step ahead prediction

Prior is p(θt|y1:t−1) = N(at, Rt). Find p(yt|y1:t−1).

Observation equation: yt = Ftθt + vt where vt
ind∼ Nm(0, Vt) (independent

of p(θt|y1:t−1).

CONAN =⇒ yt|y1:t−1 is normal

E[yt|y1:t−1] = Ftat = ft

V ar[yt|y1:t−1] = FtRtF
⊤
t + Vt = Qt

p(yt|y1:t−1) = N(ft, Qt).
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Kalman filtering Kalman filter

Latent state posterior - linear regression approach

We have p(θt|y1:t−1) = N(at, Rt). Find p(θt|y1:t).

Observation equation: yt = Ftθt + vt where vt
ind∼ Nm(0, Vt) (independent

of p(θt|y1:t−1).

Linear regression =⇒ θt|y1:t is normal

V ar[θt|y1:t] = (R−1
t + F⊤

t V −1
t Ft)

−1 = Ct

E[θt|y1:t] = Ct(R
−1
t at + F⊤

t V −1
t yt) = mt

p(θt|y1:t) = N(mt, Ct).
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Kalman filtering Kalman filter

Latent state posterior - multivariate normal approach

Prior is p(θt|y1:t−1) = N(at, Rt) and p(yt|y1:t−1) = N(ft, Qt). Find
p(θt|y1:t).

Consider

p

([
yt
θt

]∣∣∣∣ y1:t−1

)
= N

([
ft
at

]
,

[
Qt

FtRt

RtF
⊤
t

Rt

])

MVN theory =⇒ θt|y1:t−1, yt is normal

E[θt|y1:t] = at +RtF
⊤
t Q−1

t (yt − ft) = mt

V ar[θt|y1:t] = Rt −RtF
⊤
t Q−1

t FtRt = Ct

p(θt|y1:t) = N(mt, Ct).
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Kalman filtering Kalman filter

Kalman filter

1. Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

2. Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
⊤
t +Wt.

3. Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
⊤
t + Vt.

4. Obtain posterior p(θt|y1:t) = N(mt, Ct) where

mt = at +Ktet and Ct = Rt −KtQtK
⊤
t

et = yt − ft and Kt = RtF
⊤
t Q−1

t

Kt is the Kalman gain or adaptive coefficient (high values have more
weight on the current observation while low values have more weight on
the prior information).

Jarad Niemi (STAT6150@ISU) Kalman Filter and Smoother October 7, 2025 11 / 19



Kalman filtering Kalman filter

Kalman filter

1. Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

2. Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
⊤
t +Wt.

3. Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
⊤
t + Vt.

4. Obtain posterior p(θt|y1:t) = N(mt, Ct) where

mt = at +Ktet and Ct = Rt −KtQtK
⊤
t

et = yt − ft and Kt = RtF
⊤
t Q−1

t

Kt is the Kalman gain or adaptive coefficient (high values have more
weight on the current observation while low values have more weight on
the prior information).

Jarad Niemi (STAT6150@ISU) Kalman Filter and Smoother October 7, 2025 11 / 19



Kalman filtering Kalman filter example

Local level model

Yt = θt + vt vt
ind∼ N(0, V )

θt = θt−1 + wt wt
ind∼ N(0,W )

p(θ0) = N(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Kalman filter example

Local level model

Yt = θt + vt vt
ind∼ N(0, V )

θt = θt−1 + wt wt
ind∼ N(0,W )

p(θ0) = N(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Kalman filter example

Kalman gain (adaptive coefficient)
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Kalman filtering Missing observations

Kalman filter with missing data

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
⊤
t +Wt.

Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
⊤
t + Vt.

Obtain posterior p(θt|y1:t) = N(mt, Ct) where

If yt is observed,

mt = at +Ktet and Ct = Rt −KtQtK
⊤
t

et = yt − ft and Kt = RtF
⊤
t Q−1

t

If yt is not observed, mt = at and Ct = Rt.
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Kalman filtering Forecasting

Forecasting

Forecasting is simply the Kalman filter with missing observations.

So,(
θt+k

Yt+k

)
∼ N

([
at(k)
ft(k)

]
,

[
Rt(k) Ft+kRt(k)

Rt(k)F
⊤
t+k Qt(k)

])
where

at(k) = Gt+kat(k − 1)
Rt(k) = Gt+kRt(k − 1)G⊤

t+k +Wt+k

ft(k) = Ft+kat(k)
Qt(k) = Ft+kRt(k)R

⊤
t+k + Vt

with at(0) = mt and Rt(0) = Ct.
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Kalman filtering Kalman Smoother

Kalman Smoother

Smoothing can be accomplished in a manner similar to the Kalman filter
via the Kalman smoother.

If we have θt+1|y1:T ∼ N(st+1, St+1), then
θt|y1:T ∼ N(st, St) where

st = mt + CtG
⊤
t+1R

−1
t+1(st+1 − at+1)

St = Ct − CtG
⊤
t+1R

−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.
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Kalman filtering Backward sampling

Backward sampling

Recall

p(θt|y1:t) = N(mt, Ct) is available for all t from filtering

and

p(θt|θt+1, y1:T ) = N(ht, HT ) with

Ht = (C−1
t +G⊤

t+1W
−1
t+1Gt+1)

−1

ht = Ht(C
−1
t mt +G⊤

t+1W
−1
t+1θt+1)

The algorithm is then

Forward filter to obtain p(θt|y1:t) = N(mt, Ct) for all t.

Sample θT ∼ N(mT , CT ).

For t = T − 1, T − 2, . . . , 1, 0,
Calculate ht and Ht based on θt+1.
Draw θt ∼ N(ht, Ht).

This is then a joint draw of θ0:T ∼ p(θ0, . . . , θT |y1:T ).
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Kalman filtering Backward sampling

Inference questions?

Any questions on performing inference on the latent states in a DLM?
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