Kalman Filter and Smoother

Dr. Jarad Niemi

STAT 6150 - Iowa State University

October 7, 2025

Structure

$$Y_t = F_t \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N_m(0, V_t)$$

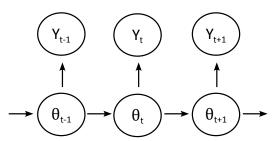
$$\theta_t = G_t \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N_p(0, W_t)$$

$$\theta_0 \sim N_p(m_0, C_0)$$

Structure

$$\begin{array}{lll} Y_t &= F_t \theta_t + v_t & v_t & \stackrel{ind}{\sim} N_m(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t & \stackrel{ind}{\sim} N_p(0,W_t) \\ & \theta_0 &\sim N_p(m_0,C_0) \end{array}$$

where v_t and w_t are independent across time and all are independent of θ_0 .



$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N_1(0, V)$$

$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N_1(0, W)$$

$$\theta_0 \sim N_1(m_0, C_0)$$

$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N_1(0, V)$$

$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N_1(0, W)$$

$$\theta_0 \sim N_1(m_0, C_0)$$

Signal-to-noise, r = W/V.

$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N_1(0, V)$$

$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N_1(0, W)$$

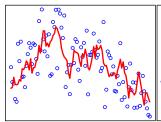
$$\theta_0 \sim N_1(m_0, C_0)$$

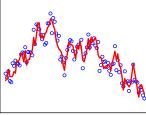
Signal-to-noise, r = W/V.

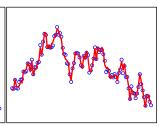
Signal-to-noise: 0.1

Signal-to-noise: 1

Signal-to-noise: 10





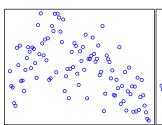


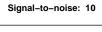
$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N(0, V)$$

$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N(0, W)$$

$$\theta_0 \sim N(m_0, C_0)$$

Signal-to-noise, r = W/V.





Goal: obtain $p(\theta_t|y_{1:t})$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

• Assume $p(\theta_{t-1}|y_{1:t-1})$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

ullet One-step ahead predictive distribution for y_t

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

ullet One-step ahead predictive distribution for y_t

$$p(y_t|y_{1:t-1}) = \int p(y_t|\theta_t)p(\theta_t|y_{1:t-1})d\theta_t$$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

ullet One-step ahead predictive distribution for y_t

$$p(y_t|y_{1:t-1}) = \int p(y_t|\theta_t)p(\theta_t|y_{1:t-1})d\theta_t$$

ullet Filtered distribution for $heta_t$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

ullet One-step ahead predictive distribution for y_t

$$p(y_t|y_{1:t-1}) = \int p(y_t|\theta_t)p(\theta_t|y_{1:t-1})d\theta_t$$

• Filtered distribution for θ_t

$$p(\theta_t|y_{1:t}) = \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

Goal: obtain $p(\theta_t|y_{1:t})$

Recursive procedure:

- Assume $p(\theta_{t-1}|y_{1:t-1})$ $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$
- Prior for θ_t

$$p(\theta_t|y_{1:t-1}) = \int p(\theta_t|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

ullet One-step ahead predictive distribution for y_t

$$p(y_t|y_{1:t-1}) = \int p(y_t|\theta_t)p(\theta_t|y_{1:t-1})d\theta_t$$

• Filtered distribution for θ_t

$$p(\theta_t|y_{1:t}) = \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) &= \int N(\theta_t;G_t\theta_{t-1},W_t)N(\theta_{t-1};m_{t-1},C_{t-1})d\theta_{t-1} \\ &= \int \frac{1}{(2\pi)^{p/2}|W_t|^{1/2}} \exp\left(-\frac{1}{2}(\theta_t-G_t\theta_{t-1})^\top W_t^{-1}(\theta_t-G_t\theta_{t-1})\right) \\ &= \frac{1}{(2\pi)^{p/2}|C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2}(\theta_{t-1}-m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1}-m_{t-1})\right)d\theta_{t-1} \end{split}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) &= \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ &= \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - G_t\theta_{t-1})^\top W_t^{-1} (\theta_t - G_t\theta_{t-1})\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2} (\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1} (\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ &= N(a_t, R_t) \end{split}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) &= \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ &= \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - G_t\theta_{t-1})^\top W_t^{-1} (\theta_t - G_t\theta_{t-1})\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2} (\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1} (\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ &= N(a_t, R_t) \end{split}$$

One-step ahead predictive distribution for yt

$$\begin{split} p(\theta_t|y_{1:t-1}) & = & \int N(\theta_t;G_t\theta_{t-1},W_t)N(\theta_{t-1};m_{t-1},C_{t-1})d\theta_{t-1} \\ & = & \int \frac{1}{(2\pi)^{p/2}|W_t|^{1/2}}\exp\left(-\frac{1}{2}(\theta_t-G_t\theta_{t-1})^\top W_t^{-1}(\theta_t-G_t\theta_{t-1})\right) \\ & & \frac{1}{(2\pi)^{p/2}|C_{t-1}|^{1/2}}\exp\left(-\frac{1}{2}(\theta_{t-1}-m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1}-m_{t-1})\right)d\theta_{t-1} \\ & = & N(a_t,R_t) \end{split}$$

One-step ahead predictive distribution for yt

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t\theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t\theta_t)^\top V_t^{-1} (y_t - F_t\theta_t)\right) \\ &= \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \end{split}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) &= \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ &= \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - G_t\theta_{t-1})^\top W_t^{-1} (\theta_t - G_t\theta_{t-1})\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2} (\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1} (\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ &= N(a_t, R_t) \end{split}$$

One-step ahead predictive distribution for y_t

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t\theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t\theta_t)^\top V_t^{-1} (y_t - F_t\theta_t)\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \\ &= N(f_t, Q_t) \end{split}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) & = & \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ & = & \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2}(\theta_t - G_t\theta_{t-1})^\top W_t^{-1}(\theta_t - G_t\theta_{t-1})\right) \\ & & \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2}(\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ & = & N(a_t, R_t) \end{split}$$

One-step ahead predictive distribution for yt

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t\theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t\theta_t)^\top V_t^{-1} (y_t - F_t\theta_t)\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \\ &= N(f_t, Q_t) \end{split}$$

Filtered distribution for θ_t

$$\begin{split} p(\theta_t|y_{1:t-1}) & = & \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ & = & \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2}(\theta_t - G_t\theta_{t-1})^\top W_t^{-1}(\theta_t - G_t\theta_{t-1})\right) \\ & & \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2}(\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ & = & N(a_t, R_t) \end{split}$$

One-step ahead predictive distribution for yt

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t\theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t\theta_t)^\top V_t^{-1} (y_t - F_t\theta_t)\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \\ &= N(f_t, Q_t) \end{split}$$

Filtered distribution for θ_t

$$p(\theta_t|y_{1:t}) \quad = \quad \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})} = \frac{N(y_t;F_t\theta_t,V_t)N(\theta_t;a_t,R_t)}{N(y_t;f_t,Q_t)}$$

$$\begin{split} p(\theta_t|y_{1:t-1}) & = & \int N(\theta_t; G_t\theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ & = & \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2}(\theta_t - G_t\theta_{t-1})^\top W_t^{-1}(\theta_t - G_t\theta_{t-1})\right) \\ & & \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2}(\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ & = & N(a_t, R_t) \end{split}$$

One-step ahead predictive distribution for yt

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t\theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t\theta_t)^\top V_t^{-1} (y_t - F_t\theta_t)\right) \\ &\qquad \qquad \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \\ &= N(f_t, Q_t) \end{split}$$

Filtered distribution for θ_t

$$\begin{array}{lcl} p(\theta_t|y_{1:t}) & = & \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})} = \frac{N(y_t;F_t\theta_t,V_t)N(\theta_t;a_t,R_t)}{N(y_t;f_t,Q_t)} \\ & = & N(m_t,C_t) \end{array}$$

Assume $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$. Find $p(\theta_t|y_{1:t-1})$.

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

Evolution equation: $\theta_t = G_t \theta_{t-1} + w_t$ where $w_t \stackrel{ind}{\sim} N_p(0, W_t)$ (independent of $p(\theta_{t-1}|y_{1:t-1})$.

ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $\bullet \ E[\theta_t|y_{1:t-1}]$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1}$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow \theta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1} = a_t$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1} = a_t$
- $Var[\theta_t|y_{1:t-1}]$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1} = a_t$
- $Var[\theta_t|y_{1:t-1}] = G_tC_{t-1}G_t^{\top} + W_t$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1} = a_t$
- $Var[\theta_t|y_{1:t-1}] = G_tC_{t-1}G_t^{\top} + W_t = R_t$

Assume
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find $p(\theta_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow heta_t | y_{1:t-1}$ is normal
- $E[\theta_t|y_{1:t-1}] = G_t m_{t-1} = a_t$
- $Var[\theta_t|y_{1:t-1}] = G_tC_{t-1}G_t^{\top} + W_t = R_t$
- $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$.

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

Observation equation: $y_t = F_t \theta_t + v_t$ where $v_t \stackrel{ind}{\sim} N_m(0, V_t)$ (independent of $p(\theta_t|y_{1:t-1})$.

ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}]$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal
- $\bullet \ E[y_t|y_{1:t-1}] = F_t a_t$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}] = F_t a_t = f_t$

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}] = F_t a_t = f_t$
- $Var[y_t|y_{1:t-1}]$

Kalman filtering

One-step ahead prediction

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

- CONAN $\implies y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}] = F_t a_t = f_t$
- $Var[y_t|y_{1:t-1}] = F_t R_t F_t^{\top} + V_t$

Prior is
$$p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$$
. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\implies y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}] = F_t a_t = f_t$
- $Var[y_t|y_{1:t-1}] = F_t R_t F_t^{\top} + V_t = Q_t$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(y_t|y_{1:t-1})$.

- ullet CONAN $\Longrightarrow y_t|y_{1:t-1}$ is normal
- $E[y_t|y_{1:t-1}] = F_t a_t = f_t$
- $Var[y_t|y_{1:t-1}] = F_t R_t F_t^{\top} + V_t = Q_t$
- $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$.

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

Observation equation: $y_t = F_t \theta_t + v_t$ where $v_t \stackrel{ind}{\sim} N_m(0, V_t)$ (independent of $p(\theta_t | y_{1:t-1})$.

• Linear regression $\implies \theta_t | y_{1:t}$ is normal

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t|y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}]$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t|y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1}$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t | y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t | y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$
- $E[\theta_t|y_{1:t}]$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t|y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$
- $E[\theta_t|y_{1:t}] = C_t(R_t^{-1}a_t + F_t^{\top}V_t^{-1}y_t)$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t|y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$
- $E[\theta_t|y_{1:t}] = C_t(R_t^{-1}a_t + F_t^{\top}V_t^{-1}y_t) = m_t$

We have $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$. Find $p(\theta_t|y_{1:t})$.

- Linear regression $\implies \theta_t | y_{1:t}$ is normal
- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$
- $E[\theta_t|y_{1:t}] = C_t(R_t^{-1}a_t + F_t^{\top}V_t^{-1}y_t) = m_t$
- $p(\theta_t|y_{1:t}) = N(m_t, C_t)$.

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

Prior is $p(\theta_t|y_{1:t-1})=N(a_t,R_t)$ and $p(y_t|y_{1:t-1})=N(f_t,Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c} y_t \\ \theta_t \end{array}\right] \middle| y_{1:t-1}\right)$$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right],\left[\begin{array}{c}Q_t\\R_t\end{array}\right]\right)$$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

Consider

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

• MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- \bullet $E[\theta_t|y_{1:t}]$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t)$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t) = m_t$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t) = m_t$
- $Var[\theta_t|y_{1:t}]$

Prior is $p(\theta_t|y_{1:t-1})=N(a_t,R_t)$ and $p(y_t|y_{1:t-1})=N(f_t,Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t) = m_t$
- $Var[\theta_t|y_{1:t}] = R_t R_t F_t^{\top} Q_t^{-1} F_t R_t$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t) = m_t$
- $Var[\theta_t|y_{1:t}] = R_t R_t F_t^{\top} Q_t^{-1} F_t R_t = C_t$

Prior is $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ and $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$. Find $p(\theta_t|y_{1:t})$.

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right],\left[\begin{array}{cc}Q_t&F_tR_t\\R_tF_t^\top&R_t\end{array}\right]\right)$$

- MVN theory $\implies \theta_t | y_{1:t-1}, y_t$ is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^{\top} Q_t^{-1} (y_t f_t) = m_t$
- $Var[\theta_t|y_{1:t}] = R_t R_t F_t^{\top} Q_t^{-1} F_t R_t = C_t$
- $p(\theta_t|y_{1:t}) = N(m_t, C_t)$.

Kalman filter

- 1. Assume $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$.
- 2. Obtain prior $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ where

$$a_t = G_t m_{t-1} \quad \text{and} \quad R_t = G_t C_{t-1} G_t^\top + W_t.$$

3. Obtain one step ahead predictive $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$ where

$$f_t = F_t a_t$$
 and $Q_t = F_t R_t F_t^{\top} + V_t$.

4. Obtain posterior $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ where

$$m_t = a_t + K_t e_t$$
 and $C_t = R_t - K_t Q_t K_t^{\top}$
 $e_t = y_t - f_t$ and $K_t = R_t F_t^{\top} Q_t^{-1}$

Kalman filter

- 1. Assume $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$.
- 2. Obtain prior $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ where

$$a_t = G_t m_{t-1} \quad \text{and} \quad R_t = G_t C_{t-1} G_t^\top + W_t.$$

3. Obtain one step ahead predictive $p(y_t|y_{1:t-1}) = N(f_t,Q_t)$ where

$$f_t = F_t a_t$$
 and $Q_t = F_t R_t F_t^\top + V_t$.

4. Obtain posterior $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ where

$$m_t = a_t + K_t e_t$$
 and $C_t = R_t - K_t Q_t K_t^{\top}$
 $e_t = y_t - f_t$ and $K_t = R_t F_t^{\top} Q_t^{-1}$

 K_t is the Kalman gain or adaptive coefficient (high values have more weight on the current observation while low values have more weight on the prior information).

Local level model

$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N(0, V)$$

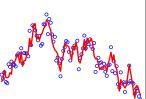
$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N(0, W)$$

$$p(\theta_0) = N(m_0, C_0)$$

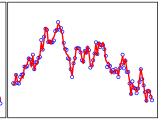
Signal-to-noise, r = W/V.

Signal-to-noise: 0.1

Signal-to-noise: 1



Signal-to-noise: 10



Local level model

$$Y_t = \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N(0, V)$$

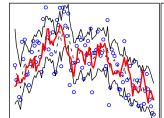
$$\theta_t = \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N(0, W)$$

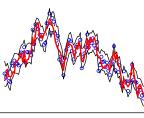
$$p(\theta_0) = N(m_0, C_0)$$

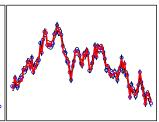
Signal-to-noise, r = W/V.

Signal-to-noise: 0.1

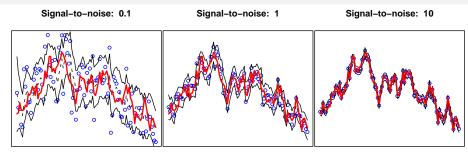
Signal-to-noise: 1



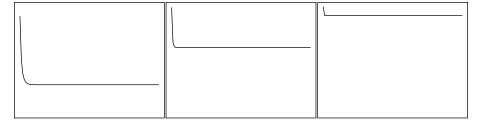




Kalman gain (adaptive coefficient)



Kalman gain (adaptive coefficient)



Kalman filter with missing data

- Assume $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1}).$
- Obtain prior $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ where

$$a_t = G_t m_{t-1} \quad \text{and} \quad R_t = G_t C_{t-1} G_t^\top + W_t.$$

• Obtain one step ahead predictive $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$ where

$$f_t = F_t a_t$$
 and $Q_t = F_t R_t F_t^{\top} + V_t$.

- Obtain posterior $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ where
 - If y_t is observed.

$$\begin{array}{lclcl} m_t & = & a_t + K_t e_t & \text{and} & C_t & = & R_t - K_t Q_t K_t^\top \\ e_t & = & y_t - f_t & \text{and} & K_t & = & R_t F_t^\top Q_t^{-1} \end{array}$$

Kalman filter with missing data

- Assume $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1}).$
- Obtain prior $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ where

$$a_t = G_t m_{t-1} \quad \text{and} \quad R_t = G_t C_{t-1} G_t^\top + W_t.$$

• Obtain one step ahead predictive $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$ where

$$f_t = F_t a_t$$
 and $Q_t = F_t R_t F_t^{\top} + V_t$.

- Obtain posterior $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ where
 - If y_t is observed.

$$\begin{array}{lclcl} m_t & = & a_t + K_t e_t & \text{and} & C_t & = & R_t - K_t Q_t K_t^\top \\ e_t & = & y_t - f_t & \text{and} & K_t & = & R_t F_t^\top Q_t^{-1} \end{array}$$

• If y_t is not observed, $m_t = a_t$ and $C_t = R_t$.

Forecasting is simply the Kalman filter with missing observations.

Forecasting is simply the Kalman filter with missing observations. So,

$$\left(\begin{array}{c} \theta_{t+k} \\ Y_{t+k} \end{array} \right) \sim N \left(\left[\begin{array}{cc} a_t(k) \\ f_t(k) \end{array} \right], \left[\begin{array}{cc} R_t(k) & F_{t+k}R_t(k) \\ R_t(k)F_{t+k}^\top & Q_t(k) \end{array} \right] \right)$$

Forecasting is simply the Kalman filter with missing observations. So,

$$\begin{pmatrix} \theta_{t+k} \\ Y_{t+k} \end{pmatrix} \sim N \left(\begin{bmatrix} a_t(k) \\ f_t(k) \end{bmatrix}, \begin{bmatrix} R_t(k) & F_{t+k}R_t(k) \\ R_t(k)F_{t+k}^\top & Q_t(k) \end{bmatrix} \right)$$

where

$$a_{t}(k) = G_{t+k}a_{t}(k-1)$$

$$R_{t}(k) = G_{t+k}R_{t}(k-1)G_{t+k}^{\top} + W_{t+k}$$

$$f_{t}(k) = F_{t+k}a_{t}(k)$$

$$Q_{t}(k) = F_{t+k}R_{t}(k)R_{t+k}^{\top} + V_{t}$$

Forecasting is simply the Kalman filter with missing observations. So,

$$\begin{pmatrix} \theta_{t+k} \\ Y_{t+k} \end{pmatrix} \sim N \left(\begin{bmatrix} a_t(k) \\ f_t(k) \end{bmatrix}, \begin{bmatrix} R_t(k) & F_{t+k}R_t(k) \\ R_t(k)F_{t+k}^\top & Q_t(k) \end{bmatrix} \right)$$

where

$$a_{t}(k) = G_{t+k}a_{t}(k-1)$$

$$R_{t}(k) = G_{t+k}R_{t}(k-1)G_{t+k}^{\top} + W_{t+k}$$

$$f_{t}(k) = F_{t+k}a_{t}(k)$$

$$Q_{t}(k) = F_{t+k}R_{t}(k)R_{t+k}^{\top} + V_{t}$$

with $a_t(0) = m_t$ and $R_t(0) = C_t$.

Kalman Smoother

Smoothing can be accomplished in a manner similar to the Kalman filter via the Kalman smoother.

Kalman Smoother

Smoothing can be accomplished in a manner similar to the Kalman filter via the Kalman smoother. If we have $\theta_{t+1}|y_{1:T}\sim N(s_{t+1},S_{t+1})$, then $\theta_t|y_{1:T}\sim N(s_t,S_t)$ where

$$\begin{array}{ll} s_t &= m_t + C_t G_{t+1}^\top R_{t+1}^{-1} (s_{t+1} - a_{t+1}) \\ S_t &= C_t - C_t G_{t+1}^\top R_{t+1}^{-1} (R_{t+1} - S_{t+1}) R_{t+1}^{-1} G_{t+1} C_t. \end{array}$$

Recall

• $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ is available for all t from filtering

Recall

- $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ is available for all t from filtering and

Recall

- $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1}, y_{1:T}) = N(h_t, H_T)$ with

$$H_t = (C_t^{-1} + G_{t+1}^{\top} W_{t+1}^{-1} G_{t+1})^{-1}$$

$$h_t = H_t (C_t^{-1} m_t + G_{t+1}^{\top} W_{t+1}^{-1} \theta_{t+1})$$

Recall

- $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1}, y_{1:T}) = N(h_t, H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

The algorithm is then

• Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.

Recall

- ullet $p(heta_t|y_{1:t})=N(m_t,C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1},y_{1:T}) = N(h_t,H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

- Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.
- Sample $\theta_T \sim N(m_T, C_T)$.

Recall

• $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ is available for all t from filtering and

Kalman filtering

• $p(\theta_t | \theta_{t+1}, y_{1:T}) = N(h_t, H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

- Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.
- Sample $\theta_T \sim N(m_T, C_T)$.
- For $t = T 1, T 2, \dots, 1, 0$.

Recall

- ullet $p(heta_t|y_{1:t})=N(m_t,C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1},y_{1:T}) = N(h_t,H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

- Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.
- Sample $\theta_T \sim N(m_T, C_T)$.
- For $t = T 1, T 2, \dots, 1, 0$,
 - Calculate h_t and H_t based on θ_{t+1} .

Recall

- ullet $p(heta_t|y_{1:t})=N(m_t,C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1},y_{1:T}) = N(h_t,H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

- Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.
- Sample $\theta_T \sim N(m_T, C_T)$.
- For $t = T 1, T 2, \dots, 1, 0$,
 - Calculate h_t and H_t based on θ_{t+1} .
 - Draw $\theta_t \sim N(h_t, H_t)$.

Recall

- ullet $p(heta_t|y_{1:t})=N(m_t,C_t)$ is available for all t from filtering and
- $p(\theta_t|\theta_{t+1},y_{1:T}) = N(h_t,H_T)$ with

$$\begin{array}{lcl} H_t & = & (C_t^{-1} + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ h_t & = & H_t (C_t^{-1} m_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{array}$$

The algorithm is then

- Forward filter to obtain $p(\theta_t|y_{1:t}) = N(m_t, C_t)$ for all t.
- Sample $\theta_T \sim N(m_T, C_T)$.
- For $t = T 1, T 2, \dots, 1, 0$,
 - Calculate h_t and H_t based on θ_{t+1} .
 - Draw $\theta_t \sim N(h_t, H_t)$.

This is then a joint draw of $\theta_{0:T} \sim p(\theta_0, \dots, \theta_T | y_{1:T})$.

Inference questions?

Any questions on performing inference on the latent states in a DLM?