#### Dynamic linear models

Dr. Jarad Niemi

STAT 615 - Iowa State University

October 10, 2017

Jarad Niemi (STAT615@ISU)

Dynamic linear models

#### Structure

$$\begin{array}{ll} Y_t &= F_t \theta_t + v_t & v_t \sim N_m(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0,W_t) \\ \theta_0 &\sim N_p(m_0,C_0) \end{array}$$



### Local level model

$$\begin{array}{ll} Y_t &= \theta_t + v_t & v_t \sim N_1(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N_1(0,W) \\ \theta_0 &\sim N_1(m_0,C_0) \end{array}$$

Signal-to-noise, r = W/V.



### Local level model

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,W) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

Signal-to-noise, r = W/V.



# Kalman filter idea

Goal: obtain  $p(\theta_t | y_{1:t})$ 

Recursive procedure:

- Assume  $p(\theta_{t-1}|y_{1:t-1})$   $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$
- Prior for  $\theta_t$

$$p(\theta_t | y_{1:t-1}) = \int p(\theta_t | \theta_{t-1}) p(\theta_{t-1} | y_{1:t-1}) d\theta_{t-1}$$

• One-step ahead predictive distribution for  $y_t$ 

$$p(y_t|y_{1:t-1}) = \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t$$

• Filtered distribution for  $\theta_t$ 

$$p(\theta_t|y_{1:t}) = \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

#### • Prior for $\theta_t$

$$\begin{split} p(\theta_t | y_{1:t-1}) &= \int N(\theta_t; G_t \theta_{t-1}, W_t) N(\theta_{t-1}; m_{t-1}, C_{t-1}) d\theta_{t-1} \\ &= \int \frac{1}{(2\pi)^{p/2} |W_t|^{1/2}} \exp\left(-\frac{1}{2}(\theta_t - G_t \theta_{t-1})^\top W_t^{-1}(\theta_t - G_t \theta_{t-1})\right) \\ &\quad \frac{1}{(2\pi)^{p/2} |C_{t-1}|^{1/2}} \exp\left(-\frac{1}{2}(\theta_{t-1} - m_{t-1})^\top C_{t-1}^{-1}(\theta_{t-1} - m_{t-1})\right) d\theta_{t-1} \\ &= N(a_t, R_t) \end{split}$$

• One-step ahead predictive distribution for  $y_t$ 

$$\begin{split} p(y_t|y_{1:t-1}) &= \int p(y_t|\theta_t) p(\theta_t|y_{1:t-1}) d\theta_t \\ &= \int N(y_t; F_t \theta_t, V_t) N(\theta_t; a_t, R_t) d\theta_t \\ &= \int \frac{1}{(2\pi)^{m/2} |V_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - F_t \theta_t)^\top V_t^{-1} (y_t - F_t \theta_t)\right) \\ &\quad \frac{1}{(2\pi)^{p/2} |R_t|^{1/2}} \exp\left(-\frac{1}{2} (\theta_t - a_t)^\top R_t^{-1} (\theta_t - a_t)\right) d\theta_t \\ &= N(f_t, Q_t) \end{split}$$

• Filtered distribution for  $\theta_t$ 

$$\begin{split} p(\theta_t|y_{1:t}) &= \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})} = \frac{N(y_t;F_t\theta_t,V_t)N(\theta_t;a_t,R_t)}{N(y_t;f_t,Q_t)} \\ &= N(m_t,C_t) \end{split}$$

Jarad Niemi (STAT615@ISU)

Dynamic linear models

#### Kalman filter

#### Latent state prior

Assume 
$$p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1})$$
. Find  $p(\theta_t|y_{1:t-1})$ .

Evolution equation:  $\theta_t = G_t \theta_{t-1} + w_t$  where  $w_t \sim N_p(0, W_t)$ .

• CONAN 
$$\implies \theta_t | y_{1:t-1} \text{ is normal}$$
  
•  $E[\theta_t | y_{1:t-1}] = G_t m_{t-1} = a_t$   
•  $Var[\theta_t | y_{1:t-1}] = G_t C_{t-1} G_t^\top + W_t = R_t$   
•  $p(\theta_t | y_{1:t-1}) = N(a_t, R_t).$ 

# One-step ahead prediction

Prior is  $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ . Find  $p(y_t|y_{1:t-1})$ .

Observation equation:  $y_t = F_t \theta_t + v_t$  where  $v_t \sim N_m(0, V_t)$ .

• CONAN 
$$\implies y_t | y_{1:t-1}$$
 is normal

• 
$$E[y_t|y_{1:t-1}] = F_t a_t = f_t$$

• 
$$Var[y_t|y_{1:t-1}] = F_t R_t F_t^\top + V_t = Q_t$$

• 
$$p(y_t|y_{1:t-1}) = N(f_t, Q_t).$$

#### Latent state posterior - linear regression approach

We have  $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$ . Find  $p(\theta_t|y_{1:t})$ .

Observation equation:  $y_t = F_t \theta_t + v_t$  where  $v_t \sim N_m(0, V_t)$ .

• Linear regression  $\implies \theta_t | y_{1:t}$  is normal

- $Var[\theta_t|y_{1:t}] = (R_t^{-1} + F_t^{\top}V_t^{-1}F_t)^{-1} = C_t$
- $E[\theta_t|y_{1:t}] = C_t(R_t^{-1}a_t + F_t^{\top}V_t^{-1}y_t) = m_t$

• 
$$p(\theta_t|y_{1:t}) = N(m_t, C_t).$$

### Latent state posterior - multivariate normal approach

Prior is  $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$  and  $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$ . Find  $p(\theta_t|y_{1:t})$ .

Consider

$$p\left(\left[\begin{array}{c}y_t\\\theta_t\end{array}\right]\middle|y_{1:t-1}\right) = N\left(\left[\begin{array}{c}f_t\\a_t\end{array}\right], \left[\begin{array}{cc}Q_t & F_tR_t\\R_tF_t^\top & R_t\end{array}\right]\right)$$

- MVN theory  $\implies \theta_t | y_{1:t-1}, y_t$  is normal
- $E[\theta_t|y_{1:t}] = a_t + R_t F_t^\top Q_t^{-1}(y_t f_t) = m_t$
- $Var[\theta_t|y_{1:t}] = R_t R_t F_t^{\top} Q_t^{-1} F_t R_t = C_t$
- $p(\theta_t | y_{1:t}) = N(m_t, C_t).$

#### Kalman filter

# Kalman filter

- Assume  $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1}).$
- Obtain prior  $p(\theta_t|y_{1:t-1}) = N(a_t,R_t)$  where

$$a_t = G_t m_{t-1}$$
 and  $R_t = G_t C_{t-1} G_t^{\top} + W_t.$ 

• Obtain one step ahead predictive  $p(y_t|y_{1:t-1}) = N(f_t,Q_t)$  where

$$f_t = F_t a_t \quad \text{and} \quad Q_t = F_t R_t F_t^\top + V_t.$$

• Obtain posterior  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  where

$$egin{array}{rcl} m_t &=& a_t + K_t e_t & ext{and} & C_t &=& R_t - K_t Q_t K_t^{ op} \ e_t &=& y_t - f_t & ext{and} & K_t &=& R_t F_t^{ op} Q_t^{-1} \end{array}$$

 $K_t$  is the Kalman gain or adaptive coefficient.

Kalman filter example

# Local level model

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,W) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

Signal-to-noise, r = W/V.



Kalman filter example

### Local level model

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,W) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

Signal-to-noise, r = W/V.



# Kalman gain (adaptive coefficient)

Signal-to-noise: 0.1

Signal-to-noise: 1

Signal-to-noise: 10



#### Kalman gain (adaptive coefficient)



Jarad Niemi (STAT615@ISU)

October 10, 2017 14 / 224

#### Kalman filter

- Assume  $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1}).$
- Obtain prior  $p(\theta_t|y_{1:t-1}) = N(a_t, R_t)$  where

$$a_t = G_t m_{t-1}$$
 and  $R_t = G_t C_{t-1} G_t^{\top} + W_t.$ 

 $\bullet$  Obtain one step ahead predictive  $p(y_t | y_{1:t-1}) = N(f_t, Q_t)$  where

$$f_t = F_t a_t$$
 and  $Q_t = F_t R_t F_t^\top + V_t$ .

• Obtain posterior  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  where

$$\begin{array}{rcl} m_t &=& a_t + K_t e_t \quad \text{and} \quad C_t &=& R_t - K_t Q_t K_t^\top \\ e_t &=& y_t - f_t \quad \text{and} \quad K_t &=& R_t F_t^\top Q_t^{-1} \end{array}$$

# Kalman filter with missing data

- Assume  $p(\theta_{t-1}|y_{1:t-1}) = N(m_{t-1}, C_{t-1}).$
- Obtain prior  $p(\theta_t | y_{1:t-1}) = N(a_t, R_t)$  where

$$a_t = G_t m_{t-1}$$
 and  $R_t = G_t C_{t-1} G_t^{\top} + W_t.$ 

• Obtain one step ahead predictive  $p(y_t|y_{1:t-1}) = N(f_t, Q_t)$  where

$$f_t = F_t a_t$$
 and  $Q_t = F_t R_t F_t^\top + V_t$ .

- Obtain posterior  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  where
  - If  $y_t$  is not observed,  $m_t = a_t$  and  $C_t = R_t$ .
  - If  $y_t$  is observed,

$$m_t = a_t + K_t e_t$$
 and  $C_t = R_t - K_t Q_t K_t^{\top}$   
 $e_t = y_t - f_t$  and  $K_t = R_t F_t^{\top} Q_t^{-1}$ 

### Forecasting

Forecasting is simply the Kalman filter with missing observations. So,

$$\begin{pmatrix} \theta_{t+k} \\ Y_{t+k} \end{pmatrix} \sim N \left( \begin{bmatrix} a_t(k) \\ f_t(k) \end{bmatrix}, \begin{bmatrix} R_t(k) & F_{t+k}R_t(k) \\ R_t(k)F_{t+k}^\top & Q_t(k) \end{bmatrix} \right)$$

where

$$\begin{array}{ll} a_t(k) &= G_{t+k} a_t(k-1) \\ R_t(k) &= G_{t+k} R_t(k-1) G_{t+k}^\top + W_{t+k} \\ f_t(k) &= F_{t+k} a_t(k) \\ Q_t(k) &= F_{t+k} R_t(k) R_{t+k}^\top + V_t \end{array}$$

with  $a_t(0) = m_t$  and  $R_t(0) = C_t$ .

## Kalman Smoother

Smoothing can be accomplished in a manner similar to the Kalman filter via the Kalman smoother. If we have  $\theta_{t+1}|y_{1:T} \sim N(s_{t+1}, S_{t+1})$ , then  $\theta_t|y_{1:T} \sim N(s_t, S_t)$  where

$$\begin{aligned} s_t &= m_t + C_t G_{t+1}^\top R_{t+1}^{-1} (s_{t+1} - a_{t+1}) \\ S_t &= C_t - C_t G_{t+1}^\top R_{t+1}^{-1} (R_{t+1} - S_{t+1}) R_{t+1}^{-1} G_{t+1} C_t. \end{aligned}$$

#### Backward sampling

# Backward sampling

Recall

•  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  is available for all t from filtering and •  $p(\theta_t | \theta_{t+1}, y_{1:T}) = N(h_t, H_T)$  with

$$H_t = (C_t^{-1} + G_{t+1}^{\top} W_{t+1}^{-1} G_{t+1})^{-1}$$
  

$$h_t = H_t (C_t^{-1} m_t + G_{t+1}^{\top} W_{t+1}^{-1} \theta_{t+1})$$

The algorithm is then

- Forward filter to obtain  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  for all t.
- Sample  $\theta_T \sim H(m_T, C_T)$ .
- For  $t = T 1, T 2, \dots, 1, 0$ .
  - Calculate  $h_t$  and  $H_t$  based on  $\theta_{t+1}$ .
  - Draw  $\theta_t \sim N(h_t, H_T)$ .

This is then a joint draw of  $\theta_{0:T} \sim p(\theta_0, \dots, \theta_T | y_{1:T})$ .

Backward sampling

### Inference questions?

#### Any questions on performing inference on the latent states in a DLM?

### Decomposition of time series

Consider a univariate series  $Y_t$ . Think of this series has being the sum of independent components

$$Y_t = Y_{1,t} + \dots + Y_{h,t} = \sum_{i=1}^h Y_{i,t}$$

where each component has its own independent DLM (dynamic linear model),

$$\begin{array}{lll} Y_{i,t} &= F_{i,t}\theta_{i,t} + v_{i,t} & v_{i,t} \sim N(0,V_{i,t}) \\ \theta_{i,t} &= G_{i,t}\theta_{i,t-1} + w_{i,t} & w_{i,t} \sim N(0,W_{i,t}) \end{array}$$

Then

$$\begin{array}{ll} Y_t &= F_t \theta_t + v_t & v_t \sim N(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N(0,W_t) \end{array}$$

# Observation equation

Recall

$$Y_t = Y_{1,t} + \dots + Y_{h,t}$$

$$Y_{i,t} = F_{i,t}\theta_{i,t} + v_{i,t} \qquad v_{i,t} \sim N(0, V_{i,t})$$

$$Y_{t} = \sum_{i=1}^{h} Y_{i,t}$$
  
=  $\sum_{i=1}^{h} [F_{i,t}\theta_{i,t} + v_{i,t}]$   
=  $\sum_{i=1}^{h} F_{i,t}\theta_{i,t} + \sum_{i=1}^{h} v_{i,t}$   
=  $\sum_{i=1}^{h} F_{i,t}\theta_{i,t} + v_{t}$   $v_{t} \sim N(0, V_{t})$   $V_{t} = \sum_{i=1}^{h} V_{i,t}$   
=  $F_{t}\theta_{t} + v_{t}$ 

where

$$\theta_t = \begin{bmatrix} \theta_{1,t} \\ \vdots \\ \theta_{h,t} \end{bmatrix} \qquad F_t = [F_{1,t}|\cdots|F_{h,t}]$$

# Evolution equation

Recall

$$\theta_t = \begin{bmatrix} \theta_{1,t} \\ \vdots \\ \theta_{h,t} \end{bmatrix} = \begin{bmatrix} G_{1,t}\theta_{1,t-1} + w_{1,t} \\ \vdots \\ G_{h,t}\theta_{h,t-1} + w_{h,t} \end{bmatrix} = \begin{bmatrix} G_{1,t}\theta_{1,t-1} \\ \vdots \\ G_{h,t}\theta_{h,t-1} \end{bmatrix} + \begin{bmatrix} w_{1,t} \\ \vdots \\ w_{h,t} \end{bmatrix}$$
$$= \begin{bmatrix} G_{1,t}\theta_{1,t-1} \\ \vdots \\ G_{h,t}\theta_{h,t-1} \end{bmatrix} + w_t = G_t\theta_{t-1} + w_t$$

where  $w_t \sim N(0, W_t)$  and

$$W_t = \begin{bmatrix} W_{1,t} & & \\ & \ddots & \\ & & W_{h,t} \end{bmatrix} \qquad G_t = \begin{bmatrix} G_{1,t} & & \\ & \ddots & \\ & & G_{h,t} \end{bmatrix}$$

# Combining model components

Consider

$$\begin{array}{ll} Y_t &= F_t \theta_t + v_t & v_t \sim N(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N(0,W_t) \end{array}$$

where  $V_t = \sum_{i=1}^h V_{i,t}$ ,

$$\theta_t = \begin{bmatrix} \theta_{1,t} \\ \vdots \\ \theta_{h,t} \end{bmatrix} \qquad F_t = [F_{1,t}|\cdots|F_{h,t}]$$

and

$$W_t = \begin{bmatrix} W_{1,t} & & \\ & \ddots & \\ & & W_{h,t} \end{bmatrix} \qquad G_t = \begin{bmatrix} G_{1,t} & & \\ & \ddots & \\ & & G_{h,t} \end{bmatrix}$$

# Polynomial trend model definition

A polynomial model of order n is a DLM with constant [and specified] matrices  $F_t = F$  and  $G_t = G$ , and a forecast function of the form

$$f_t(k) = E(Y_{t+k}|y_{1:t}) = a_{t,0} + a_{t,1}k + \dots + a_{t,n-1}k^{n-1}, \ k \ge 0$$

where  $a_{t,0}, \ldots, a_{t,n-1}$  are linear functions of  $m_t = E(\theta_t | y_{1:t})$  and are independent of k. Thus, the forecast function is a polynomial or order n-1 in k.

In practice we use,

- Local level model (n = 1).
- Linear trend model (n = 2).
- Exponential trends are accommodated by taking logs and then using a linear trend model.

#### Local level model

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,W) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

where  $F_t = F = 1$ ,  $G_t = G = 1$ ,  $V_t = V$ , and  $W_t = W$ .

What is the forecast function?  $f_t(k) = E(Y_{t+k}|y_{1:t}) = m_t$ .







Normal Q-Q Plot



#### Linear trend model

### Linear trend model

$$\begin{array}{lll} Y_t &= \mu_t + v_t & v_t \sim N(0,V) \\ \mu_t &= \mu_{t-1} + \beta_{t-1} + w_{t,1} & w_{t,1} \sim N(0,\sigma_{\mu}^2) \\ \beta_t &= \beta_{t-1} + w_{t,2} & w_{t,2} \sim N(0,\sigma_{\beta}^2) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

• 
$$F_t = F = (1, 0)$$
  
•  $\theta_t = (\mu_t, \beta_t)^\top$ 

$$G_t = \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

• Forecast function  $f_t(k) = E[Y_{t+k}|y_{1:t}] = \hat{\mu}_t + k\hat{\beta}_t$ 



# Polynomial trend models

$$\begin{array}{rcl} Y_t &= F_t \theta_t + v_t & v_t \sim N_m(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0,W_t) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

• 
$$F_t = F = (1, 0, \dots, 0)$$

۲

$$G_t = G = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

•  $W_t = W = \operatorname{diag}(W_1, \ldots, W_n)$ 

# Specifying a local level model in R

#### Example seasonal time series



#### Air temperatures at Nottingham Castle

#### Regression - air temp on month

Coefficients:

|             | Estimate  | Std. Error   | t value  | Pr(> t )  |     |
|-------------|-----------|--------------|----------|-----------|-----|
| (Intercept) | 46.2900   | 0.5176       | 89.433   | < 2e-16   | *** |
| xAug        | 14.2300   | 0.7320       | 19.440   | < 2e-16   | *** |
| xDec        | -6.7600   | 0.7320       | -9.235   | < 2e-16   | *** |
| xFeb        | -7.1000   | 0.7320       | -9.700   | < 2e-16   | *** |
| xJan        | -6.5950   | 0.7320       | -9.010   | < 2e-16   | *** |
| xJul        | 15.6100   | 0.7320       | 21.325   | < 2e-16   | *** |
| xJun        | 11.7500   | 0.7320       | 16.052   | < 2e-16   | *** |
| xMar        | -4.0950   | 0.7320       | -5.594   | 6.32e-08  | *** |
| xMay        | 6.2700    | 0.7320       | 8.566    | 1.62e-15  | *** |
| xNov        | -3.7100   | 0.7320       | -5.068   | 8.29e-07  | *** |
| xOct        | 3.2050    | 0.7320       | 4.378    | 1.82e-05  | *** |
| xSep        | 10.1900   | 0.7320       | 13.921   | < 2e-16   | *** |
|             |           |              |          |           |     |
| Signif. cod | es: 0 *** | * 0.001 ** ( | 0.01 * 0 | .05 . 0.1 | 1   |

Residual standard error: 2.315 on 228 degrees of freedom Multiple R-squared: 0.9304, Adjusted R-squared: 0.9271 F-statistic: 277.3 on 11 and 228 DF, p-value: < 2.2e-16

#### No intercept regression - air temp on month

|                | Coefficients: |          |             |          |            |       |   |  |
|----------------|---------------|----------|-------------|----------|------------|-------|---|--|
|                |               | Estimate | Std. Error  | t value  | Pr(> t )   |       |   |  |
|                | xApr          | 46.2900  | 0.5176      | 89.43    | <2e-16     | ***   |   |  |
|                | xAug          | 60.5200  | 0.5176      | 116.93   | <2e-16     | ***   |   |  |
|                | xDec          | 39.5300  | 0.5176      | 76.37    | <2e-16     | ***   |   |  |
|                | xFeb          | 39.1900  | 0.5176      | 75.72    | <2e-16     | ***   |   |  |
|                | xJan          | 39.6950  | 0.5176      | 76.69    | <2e-16     | ***   |   |  |
|                | xJul          | 61.9000  | 0.5176      | 119.59   | <2e-16     | ***   |   |  |
|                | xJun          | 58.0400  | 0.5176      | 112.13   | <2e-16     | ***   |   |  |
|                | xMar          | 42.1950  | 0.5176      | 81.52    | <2e-16     | ***   |   |  |
|                | xMay          | 52.5600  | 0.5176      | 101.55   | <2e-16     | ***   |   |  |
|                | xNov          | 42.5800  | 0.5176      | 82.27    | <2e-16     | ***   |   |  |
|                | xOct          | 49.4950  | 0.5176      | 95.62    | <2e-16     | ***   |   |  |
|                | xSep          | 56.4800  | 0.5176      | 109.12   | <2e-16     | ***   |   |  |
|                |               |          |             |          |            |       |   |  |
| Signif. codes: |               |          | : 0 *** 0.0 | 001 ** 0 | .01 * 0.05 | 5.0.1 | 1 |  |
|                |               |          |             |          |            |       |   |  |
|                |               |          |             |          |            |       |   |  |

Residual standard error: 2.315 on 228 degrees of freedom Multiple R-squared: 0.9979, Adjusted R-squared: 0.9978 F-statistic: 9231 on 12 and 228 DF, p-value: < 2.2e-16
## Time series decomposition

> plot(decompose(nottem))



Decomposition of additive time series

### Example seasonal time series



#### Air temperatures at Nottingham Castle

#### Zero-mean seasonal time series



Deviations from average air temperatures at Nottingham Castle

## Seasonal factors

Suppose all s seasons have a factor  $\alpha_i$ . Then

#### Rotating factors

If 
$$\theta_1 = (\alpha_1, \alpha_2, \dots, \alpha_s)^{\top}$$
 and  $W_t = 0$ , what is  $\theta_t$ ?

$$\begin{aligned} \theta_2 &= G\theta_1 = (\alpha_2, \alpha_3, \alpha_4, \dots, \alpha_s, \alpha_1)^\top \\ \theta_3 &= G\theta_2 = (\alpha_3, \alpha_4, \dots, \alpha_s, \alpha_1, \alpha_2)^\top \\ \vdots \\ \theta_t &= G\theta_{t-1} = (\alpha_j, \alpha_{j+1}, \dots, \alpha_s, \alpha_1, \dots, \alpha_{j-1})^\top \end{aligned}$$

where  $j = t \mod s \ (j\%\% s \ \text{in R})$ .

# Alternative DLM for seasonal factors

Suppose all s seasons have a factor  $\alpha_i.$  Then

| -          |   | $\begin{aligned} \alpha_1 + v_1 \\ \alpha_2 + v_2 \end{aligned}$ | $Y_t = F_t \theta_t + v_t$<br>$\theta_t = G_t \theta_{t-1} + w_t$                                                                                                                                                      |
|------------|---|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ÷ |                                                                  | where                                                                                                                                                                                                                  |
| $Y_s$      | = | $\alpha_s + v_s$                                                 | $\theta_1 = (\alpha_1, \alpha_s, \alpha_{s-1}, \dots, \alpha_2)^\top$                                                                                                                                                  |
| $Y_{s+1}$  | = | $\alpha_1 + v_{s+1}$                                             | $F_t = F = (1, 0, 0, \dots, 0)$                                                                                                                                                                                        |
| $Y_{s+2}$  | = | $\alpha_2 + v_{s+2}$                                             | $\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$                                                                                                                                                                 |
|            | ÷ |                                                                  | $\left \begin{array}{ccccccccc} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \end{array}\right $                                                                                                                   |
| $Y_{2s}$   | = | $\alpha_s + v_{2s}$                                              | $G_t = G = \left  \begin{array}{ccc} 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \end{array} \right $                                                                                               |
| $Y_{2s+1}$ | = | $\alpha_1 + v_{2s+1}$                                            |                                                                                                                                                                                                                        |
| $Y_{2s+2}$ | = | $\alpha_2 + v_{2s+2}$                                            | $G_t = G = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \vdots & 1 & 0 \end{bmatrix}$ |
|            | : |                                                                  | $W_t = W = 0$ (maybe)                                                                                                                                                                                                  |

## Identifiability in seasonal factor models

- Modeling mean separately
- Looking at deviations from the mean
  - $\implies$  parameter identifiability issue
- Identifiability constraints:
  - Set  $\alpha_j = 0$  for some  $j \in \{1, 2, \dots, s\}$ .
  - Sum-to-zero constraint, i.e.  $\sum_{i=1}^{s} \alpha_i = 0$ .

#### Parsimonious seasonal factor model

$$\begin{array}{rcl} Y_t & = & F_t \theta_t + v_t \\ \theta_t & = & G_t \theta_{t-1} + w_t \end{array}$$

where

$$\begin{aligned} \theta_1 &= (\alpha_1, \alpha_s, \alpha_{s-1}, \dots, \alpha_3)^\top \\ F_t &= F = (1, 0, \dots, 0) \\ \\ G_t &= G = \begin{bmatrix} -1 & -1 & \cdots & -1 & -1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \vdots & 1 & 0 \end{bmatrix} \\ W_t &= W = 0 \pmod{2}$$

 $\begin{aligned} \theta_2 &= G\theta_1 = (\alpha_2, \alpha_1, \alpha_s, \alpha_{s-1}, \dots, \alpha_4)^\top \\ \theta_3 &= G\theta_2 = (\alpha_3, \alpha_2, \alpha_1, \alpha_s, \alpha_{s-1}, \dots, \alpha_5)^\top \\ \vdots \\ \theta_t &= G\theta_{t-1} \\ &= (\alpha_j, \alpha_{j-1}, \dots, \alpha_1, \alpha_s, \alpha_{s-1}, \dots, \alpha_{j+2})^\top \end{aligned}$ 

where  $j = t \mod s$ .

What is  $\theta_2$  if W = 0?

## Seasonal factor model in R

```
##
## Call:
## lm(formula = y - mean(y) ~ x - 1)
##
## Residuals:
##
       Min
            10 Median 30 Max
## -7.890 -1.369 0.285 1.405 6.270
##
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
##
## xJan -9.3446 0.5176 -18.054 < 2e-16 ***
## xFeb -9.8496 0.5176 -19.030 < 2e-16 ***
## xMar -6.8446 0.5176 -13.224 < 2e-16 ***
## xApr -2.7496 0.5176 -5.312 2.57e-07 ***
## xMay 3.5204 0.5176 6.802 9.00e-11 ***
         9.0004 0.5176 17.389 < 2e-16 ***
## xJun
## xJul 12.8604 0.5176 24.847 < 2e-16 ***

        ## xAug
        11.4804
        0.5176
        22.180
        < 2e-16</th>
        ***

        ## xSep
        7.4404
        0.5176
        14.375
        < 2e-16</td>
        ***

        ## xOct
        0.4554
        0.5176
        0.880
        0.38

## xNov -6.4596 0.5176 -12.480 < 2e-16 ***
## xDec -9.5096 0.5176 -18.373 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.315 on 228 degrees of freedom
## Multiple R-squared: 0.9304, Adjusted R-squared: 0.9268
## F-statistic: 254.2 on 12 and 228 DF, p-value: < 2.2e-16
```

#### Seasonal factor model in R

```
library(dlm)
nottem.model = dlmModSeas(12,dV=2.315^2,dW=rep(0,11))
nottem.filter = dlmFilter(y-mean(y),nottem.model)
n = length(y) + 1 # Due to theta_0
data.frame(mean = c(-sum(nottem.filter$m[n,]), rev(nottem.filter$m[n,])),
lm_mean = m$coefficients)
```

```
        ##
        mean
        Im_mean

        ##
        xlan
        -9.3445833
        -9.3445833

        ##
        xFeb
        -9.8495833
        -9.8495833

        ##
        xMar
        -6.8445831
        -6.8445833

        ##
        xMar
        -2.7495832
        -2.7495833

        ##
        xMar
        3.5204166
        3.5204166

        ##
        xJun
        9.0004164
        9.0004167

        ##
        xJun
        12.8604163
        12.8604167

        ##
        xAug
        11.4804164
        11.4804167

        ##
        xSep
        7.4404165
        7.4404167

        ##
        xNov
        -6.4555831
        -6.4555831

        ##
        xNov
        -6.4555831
        -9.5058831
```

#### Basis

## Canonical basis

Suppose all s seasons have a factor  $\alpha_i$ . Then, think of  $\alpha$  as a linear combination of basis vectors

$$\alpha = (\alpha_1, \dots, \alpha_s) = \sum_{i=1}^s \alpha_i u_i$$

where  $u_i$  is the s-dimensional vector having the *i*th component equal to one and all other elements zero.

- This representation lacks
  - Interpretation
  - Smoothness differentiation
  - Parsimony

#### Basis

# Fourier frequencies

Let

$$\omega_j = 2\pi \frac{j}{s}, \quad j = 0, 1, \dots, \frac{s}{2}$$

where s is the length of the period.

Consider

$$\begin{array}{ll} e_0 &= (1,1,\ldots,1)^\top\\ c_1 &= (\cos\omega_1,\cos2\omega_1,\ldots\coss\omega_1)^\top\\ s_1 &= (\sin\omega_1,\sin2\omega_1,\ldots\sins\omega_1)^\top\\ &\vdots\\ c_j &= (\cos\omega_j,\cos2\omega_j,\ldots\coss\omega_j)^\top\\ s_j &= (\sin\omega_j,\sin2\omega_j,\ldots\sins\omega_j)^\top\\ &\vdots\\ c_{s/2} &= (\cos\omega_{s/2},\cos2\omega_{s/2},\ldots\coss\omega_{s/2})^\top \end{array}$$

 $s_{s/2}$  is all zeros

## Plotting Fourier basis



#### Basis

## Fourier basis

Basis for  $\mathbb{R}^s$ 

$$\alpha = a_0 e_0 + \sum_{j=1}^{s/2-1} (a_j c_j + b_j s_j) + a_{s/2} c_{s/2}.$$

Assume  $a_0 = 0$  since the mean will be modeled separately, e.g. through a polynomial trend model. For j = 1, 2, ..., s/2, the *j*th harmonic is

$$S_j(t) = a_j \cos(t\omega_j) + b_j \sin(t\omega_j) = A_j \cos(t\omega_j + \gamma_j)$$

where  $b_{s/2} = 0$ ,  $A_j = \sqrt{a_j^2 + b_j^2}$  is the amplitude, and  $\gamma_i = \arctan(-b_i/a_i)$  is the phase.

### Evolving a harmonic

For  $j = 1, 2, \ldots, s/2$ , the *j*th harmonic is

=

$$S_j(t) = a_j \cos(t\omega_j) + b_j \sin(t\omega_j)$$

What is  $S_j(t+1)$ ? It is

$$S_j(t+1) = a_j \cos([t+1]\omega_j) + b_j \sin([t+1]\omega_j).$$

For j < s/2, if we only know the value of  $S_j(t)$ , i.e. we don't know the value of  $a_j$  and  $b_j$  individual, we cannot determine  $S_j(t+1)$ . But we can find that

$$S_{j}(t+1) = a_{j} \cos([t+1]\omega_{j}) + b_{j} \sin([t+1]\omega_{j})$$
  

$$\vdots$$
  

$$= (a_{j} \cos(t\omega_{j}) + b_{j} \sin(t\omega_{j})) \cos(\omega_{j}) + (-a_{j} \sin(t\omega_{j}) + b_{j} \cos(t\omega_{j})) \sin(\omega_{j})$$

$$= S_j(t)\cos(\omega_j) + S_j^*(t)\sin(\omega_j)$$

## Building a DLM - constructing G

For  $j = 1, 2, \ldots, s/2$ , the *j*th harmonic is

$$S_j(t) = a_j \cos(t\omega_j) + b_j \sin(t\omega_j)$$

The conjugate harmonic is

$$S_j^*(t) = -a_j \sin(t\omega_j) + b_j \cos(t\omega_j).$$

And the jth harmonic evolves in time according to

$$\begin{bmatrix} S_j(t+1) \\ S_j^*(t+1) \end{bmatrix} = \begin{bmatrix} \cos \omega_j & \sin \omega_j \\ -\sin \omega_j & \cos \omega_j \end{bmatrix} \begin{bmatrix} S_j(t) \\ S_j^*(t) \end{bmatrix}$$

and

$$S_{s/2}(t+1) = -S_{s/2}(t)$$

## Period j DLMs

Consider DLMs containing only seasonality of frequency j < s/2.

$$\begin{bmatrix} S_j(t+1) \\ S_j^*(t+1) \end{bmatrix} = \begin{bmatrix} \cos \omega_j & \sin \omega_j \\ -\sin \omega_j & \cos \omega_j \end{bmatrix} \begin{bmatrix} S_j(t) \\ S_j^*(t) \end{bmatrix}.$$

So this is a DLM with evolution matrix

$$H_j = \begin{bmatrix} \cos \omega_j & \sin \omega_j \\ -\sin \omega_j & \cos \omega_j \end{bmatrix},$$

state vector  $(S_j(t), S_j^*(t))^{\top}$ , and observation matrix  $F = [1 \ 0]$ . If j = s/2, we have

$$S_{s/2}(t+1) = \cos((t+1)\pi) = -\cos(t\pi) = -S_{s/2}(t)$$

which is a DLM with state vector  $S_{s/2}(t)$ , evolution matrix  $H_{s/2} = [-1]$ , and observation matrix F = [1].

## Fourier form seasonal DLM

Combine these period j DLMs using our combining rules:

$$\theta_t = (S_1(t), S_1^*(t), \dots, S_{\frac{s}{2}-1}(t), S_{\frac{s}{2}-1}^*(t), S_{\frac{s}{2}}(t))^\top$$

with evolution matrix

$$G = \mathsf{blockdiag}(H_1, \dots, H_{\frac{s}{2}})$$

and observation matrix

$$F = [1 \ 0 \ 1 \ 0 \ \dots \ 0 \ 1]$$

and initial vector

$$\theta_0 = (a_1, b_1, \dots, a_{\frac{s}{2}-1}, b_{\frac{s}{2}-1}, a_{\frac{s}{2}})^\top.$$

The seasonal process can be made more smooth by dropping higher harmonics.

## Nottingham data

## Nottingham data

```
ggplot(subset(d, harmonics==6), aes(month, effect, group=1)) +
    geom_line() +
    theme_bw()
```



### Plotting Harmonics for Nottingham data



#### Nottingham data - fewer harmonics

```
d$harmonics_f = factor(d$harmonics)
ggplot(d, aes(month, effect, color=harmonics_f, shape=harmonics_f, group=harmonics_f)) +
geom_point() +
geom_line() +
theme_bw()
```



#### Sunspots

The previous development works for even period s and odd period s with the slight change that  $j = 0, \ldots, (s - 1)/2$ . A similar development can be constructed for periodic observations with a non-integer period. In this example, the period for sunspots was estimated to be 130.51 months. This quantity and the variances were estimated via MLEs.

### Sunspots





# ARMA(p,q) [Box-Jenkins models]

Assuming  $\mu = 0$ , the autoregressive moving average model is :

$$Y_t = \sum_{j=1}^p \phi_j Y_{t-j} + \sum_{j=1}^q \psi_j \epsilon_{t-j} + \epsilon_t$$

$$Y_t = \sum_{j=1}^r \phi_j Y_{t-j} + \sum_{j=1}^{r-1} \psi_j \epsilon_{t-j} + \epsilon_t$$

where  $r = \max\{p, q+1\}$  with  $\phi_j = 0$  for j > p and  $\psi_j = 0$  for j > q and  $\epsilon_t \stackrel{ind}{\sim} N(0, \sigma^2)$ .

## DLM representation of ARMA model

Then an ARMA(p,q) is a DLM with

with

$$\theta_{t} = G\theta_{t-1} + R\epsilon_{t}$$

$$V = 0$$

$$W = RR^{\top}\sigma^{2}$$

$$\theta_{t} = (\theta_{1,t}, \dots, \theta_{r,t})^{\top}$$

$$F = (1, 0, \dots, 0)$$

$$G = \begin{bmatrix} \phi_{1} & 1 & 0 & \cdots & 0 \\ \phi_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{r-1} & 0 & \cdots & 0 & 1 \\ \phi_{r} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$R = (1, \psi_{1}, \dots, \psi_{r-2}, \psi_{r-1})^{\top}$$

 $Y_t = F\theta_t$ 

### Verification of DLM representation of an ARMA model

$$\begin{array}{rcl} Y_t & = & \theta_{1,t} \\ \theta_{1,t} & = & \phi_1 \theta_{1,t-1} + \theta_{2,t-1} + \epsilon_t \\ \theta_{2,t} & = & \phi_2 \theta_{1,t-1} + \theta_{3,t-1} + \psi_1 \epsilon_t \\ & \vdots \\ \theta_{r-1,t} & = & \phi_{r-1} \theta_{1,t-1} + \theta_{r,t-1} + \psi_{r-2} \epsilon_t \\ \theta_{r,t} & = & \phi_r \theta_{1,t-1} + \psi_{r-1} \epsilon_t \end{array}$$

(

### Verification of DLM representation of an ARMA model

# ARIMA(p,d,q)

- An ARIMA(p,d,q) can be fit by taking the *d*th order difference of the data and then applying an ARMA(p,q) model.
  - Clearly we can do the previous with the DLM representation.
- Alternatively, ARIMA models have a direct DLM representation (see section 3.2.5 in Petris)
- ARIMA models are typically used for non-stationary time series.
- In the DLM framework, modeling non-stationarity through a polynomial trend or seasonal model is more common than using the ARIMA framework.

## Log US GDP



# A model for Log US GDP

$$Y_t = Y_t^{(p)} + Y_t^{(g)}$$

$$Y_t^{(p)} = F^{(p)}\theta_t^{(p)} \theta_t^{(p)} = G^{(p)}\theta_{t-1}^{(p)} + w_t^{(p)}$$

$$\begin{array}{lcl} Y_t^{(g)} & = & F^{(g)}\theta_t^{(g)} \\ \theta_t^{(g)} & = & G^{(g)}\theta_{t-1}^{(g)} + w_t^{(g)} \end{array}$$

1

# A model for Log US GDP

$$Y_t = F\theta_t + v_t$$
  
$$\theta_t = G\theta_{t-1} + w_t$$

$$\begin{array}{rcl} \theta_t &=& (Y_t^{(p)}, \delta_t, Y_t^{(g)}, \theta_{t,2}^{(g)})^\top \\ F &=& (1, 0, 1, 0) \\ G &=& \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \phi_1 & 1 \\ 0 & 0 & \phi_2 & 0 \end{bmatrix} \\ V &=& 0 \\ W &=& \operatorname{diag}(\sigma_\epsilon^2, \sigma_z^2, \sigma_u^2, 0) \end{array}$$

## MLE parameter estimates in Log US GDP model

```
> level0 <- Lgdp[1]</pre>
> slope0 <- mean(diff(Lgdp))</pre>
> buildGap <- function(u) {</pre>
    trend <- dlmModPoly(dV = 1e-7, dW = exp(u[1:2]),
                          m0 = c(level0, slope0), C0 = 2 * diag(2))
    gap <- dlmModARMA(ar = u[4:5], sigma2 = exp(u[3]))</pre>
    return(trend + gap)}
> init <- c(-3, -1, -3, .4, .4)
> outMLE <- dlmMLE(Lgdp, init, buildGap)</pre>
> dlmGap <- buildGap(outMLE$par)</pre>
> sqrt(diag(W(dlmGap))[1:3])
[1] 0.0057817835 0.0000763763 0.0061453639
> GG(dlmGap)[3:4, 3]
[1] 1.4806256 -0.5468107
```

## MLE parameter estimates in Log US GDP model

gdpSmooth <- dlmSmooth(Lgdp, dlmGap)</pre>



## Standard regression model

Consider a temporal regression problem with  $y_t \in \mathbb{R}$  and  $x_t \in \mathbb{R}^p$ . A standard regression model assumes

$$y_t = x_t^{\top} \theta + \epsilon_t, \qquad \epsilon_t \stackrel{ind}{\sim} N(0, \sigma^2).$$

But, if the effect of  $x_t$  on  $y_t$  changes with t, we may want to consider the model

$$y_t = x_t^{\top} \theta_t + \epsilon_t, \qquad \epsilon_t \stackrel{ind}{\sim} N(0, \sigma^2).$$

And put some kind of evolution on  $\theta_t$ , e.g.

$$\theta_t = G_t \theta_{t-1} + \omega_t, \qquad \omega_t \stackrel{ind}{\sim} N_p(0, W_t).$$

Outstanding problem: How can we differentiate dynamic coefficients from autocorrelated errors?

## Dynamic regression model

This dynamic regression model written as a DLM is

$$Y_t = F_t \theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N(0, \sigma_t^2)$$
  
$$\theta_t = G_t \theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N_p(0, W_t)$$

where

- $F_t = x_t^\top$ ,
- (typically)  $G_t = I_p$ , and
- (typically)  $W_t$  is diagonal.
# Background

Use the following notation:

- : return at time t of the asset under study
- : return at time t of the market
- : return at time t of a risk free asset

Let

 $r_t \\ r_t^{(M)}$ 

 $r_{\star}^{(f)}$ 

$$y_t = r_t - r_t^{(f)}$$
  
 $x_t = r_t^{(M)} - r_t^{(f)}$ 

A univariate capital asset pricing model (CAPM) assumes that

$$y_t = \alpha + \beta x_t + v_t, \qquad v_t \stackrel{ind}{\sim} N(0, \sigma^2).$$



#### Static regression of IBM returns

```
> outLM <- lm(IBM ~ x)
> outLM$coef
 (Intercept) x
-0.0004895937 0.4568207721
>
> mod <- dlmModReg(x, dV = 0.00254, m0 = c(0, 0),
+ C0 = diag(c(1e+07, 1e+07)))
> outF <- dlmFilter(IBM, mod)
> outF$m[1 + length(IBM), ]
[1] -0.0004895937 0.4568207719
```

Since the estimate for  $\beta < 1$  the stock would be considered conservative.

Jarad Niemi (STAT615@ISU)

#### Dynamic regression of IBM returns

```
> buildCapm <- function(u) {</pre>
      dlmModReg(x, dV = exp(u[1]), dW = exp(u[2 : 3]))
+
+ }
> outMLE <- dlmMLE(IBM, parm = rep(0, 3), buildCapm)</pre>
> exp(outMLE$par)
[1] 2.328402e-03 1.100214e-05 6.495784e-04
> outMLE$value
[1] -276.7014
> mod <- buildCapm(outMLE$par)</pre>
> outS <- dlmSmooth(IBM, mod)</pre>
> plot(as.zoo(dropFirst(outS$s)), main = "",
       mar = c(0, 2.1, 0, 1.1),
       oma = c(2.1,0,.1,.1), cex.axis = 0.5)
```

#### CAPM example



# Longitudinal data

Suppose at each time point, you have observations from multiple units, e.g. people, countries, stocks, etc. The data can be represented as a matrix.

|      | Time      |           |     |           |  |  |
|------|-----------|-----------|-----|-----------|--|--|
| Item | 1         | 2         | ••• | T         |  |  |
| 1    | $Y_{1,1}$ | $Y_{1,2}$ | ••• | $Y_{1,T}$ |  |  |
| 2    | $Y_{2,1}$ | $Y_{2,2}$ | ••• | $Y_{2,T}$ |  |  |
| :    |           | :         |     |           |  |  |
| m    | $Y_{m,1}$ | $Y_{m,2}$ | ••• | $Y_{m,T}$ |  |  |

# Individual univariate DLMs

Suppose for each unit i = 1, ..., m, we can write down a univariate DLM:

$$\begin{array}{ll} Y_{i,t} &= F\theta_t^{(i)} + v_{i,t}, & v_{i,t} \sim N(0,V_i) \\ \theta_t^{(i)} &= G\theta_{t-1}^{(i)} + w_t^{(i)}, & w_t^{(i)} \sim N_p(0,W_i) \end{array}$$

- F and G are constant for all i and t
- $V_i$  and  $W_i$  are constant for all t
- $\theta_t^{(i)}$  are still vectors, thus the notation
- Is there a relationship between  $V_i$  and  $V_j$  or  $W_i$  and  $W_j$  for  $i \neq j$ ?
- How about  $Cov(v_{i,t}, v_{j,t})$  or  $Cov(w_t^{(i)}, w_t^{(j)})$  for  $i \neq j$ ?

#### Linear trend models

Suppose you have a linear trend model for each unit *i*:

$$Y_{i,t} = F_{i,t}\theta_t^{(i)} + v_{i,t} \qquad v_{i,t} \sim N_m(0, V_{i,t}) \\ \theta_{i,t} = G_{i,t}\theta_{t-1}^{(i)} + w_t^{(i)} \qquad w_t^{(i)} \sim N_p(0, W_{i,t})$$

• What is 
$$F_{i,t}$$
?  $F_{i,t} = (1,0)^ op$ 

• What is 
$$G_{i,t}$$
?

$$G_{i,t} = \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

- What is  $V_{i,t}$ ?  $V_{i,t} = V_i$
- What is  $W_{i,t}$ ?  $W_{i,t} = W_i$
- What is  $\theta_t^{(i)}$ ?  $\theta_t^{(i)} = (\mu_{i,t}, \beta_{i,t})$

#### Linear trend models

Combine these into a DLM with m = 2:

$$\begin{aligned} Y_t &= F_t \theta_t + v_t & v_t \sim N_m(0, V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0, W_t) \end{aligned}$$

• 
$$\theta_t = (\mu_{1,t}, \mu_{2,t}, \beta_{1,t}, \beta_{2,t})$$

• What is  $F_t$ ?

$$F_t = \left[ \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

• What is  $V_t$ ?

$$V_t = V = \left[ \begin{array}{cc} V_1 & ? \\ ? & V_2 \end{array} \right]$$

• What is  $G_t$ ?

$$G_t = \left[ \begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

• What is  $W_t$ ?

$$W_t = W = \left[ \begin{array}{cc} W_\mu & 0 \\ 0 & W_\beta \end{array} \right]$$

• What are  $W_{\mu}$  and  $W_{\beta}$ ? If diagonal?

Jarad Niemi (STAT615@ISU)

#### Kronecker products

Given two matrices A and B, the Kronecker product  $A\otimes B$  is defined as

$$\left[\begin{array}{cccc} a_{1,1}B & \cdots & a_{1,n}B \\ \vdots & \vdots & \vdots \\ a_{m,1}B & \cdots & a_{m,n}B \end{array}\right]$$

• If A is 2x2, what is  $A \otimes I_2$ ?

# SUTSE model

$$\begin{array}{ll} Y_t &= (F \otimes I_m)\theta_t + v_t & v_t \sim N_m(0,V) \\ \theta_t &= (G \otimes I_m)\theta_{t-1} + w_t & w_t \sim N_p(0,W) \end{array}$$

#### where

The covariance matrices V and W are typically somewhat sparse. Often

- $\bullet\,$  off-diagonal elements of V are zero
- $\bullet\,$  off-diagonal elements of W are zero
- $\bullet\,$  some diagonal elements of W are zero

# The data



#### Model setup

```
> mod <- dlmModPoly(2)</pre>
> mod$FF <- mod$FF %x% diag(2)</pre>
> mod$GG <- mod$GG %x% diag(2)</pre>
>
> W1 <- matrix(0, 2, 2)
> W2 <- diag(c(49, 437266))
> W2[1, 2] <- W2[2, 1] <- 155
> mod W < - bdiag(W1, W2)
>
> V <- diag(c(72, 14353))
> Var[1, 2] <- Var[2, 1] <- 1018
> mod V < - V
>
> mod m0 <- rep(0, 4)
> mod$C0 <- diag(4) * 1e7
> mod <- as.dlm(mod)</pre>
```

#### Filtering and one-step ahead prediction errors

- > investFilt <- dlmFilter(invest, mod)
  >
- > sdev <- residuals(investFilt)\$sd</pre>
- > lwr <- investFilt\$f + qnorm(0.025) \* sdev</pre>
- > upr <- investFilt\$f qnorm(0.025) \* sdev</pre>

#### The data



#### Individual univariate dynamic regressions

Suppose for each unit *i*, we have a univariate dynamic regression model:

$$\begin{array}{ll} Y_{i,t} &= F_t^{(i)} \theta_t^{(i)} + v_{i,t}, & v_{i,t} \sim N(0,V_i) \\ \theta_t^{(i)} &= G_{i,t} \theta_{t-1}^{(i)} + w_t^{(i)}, & w_t^{(i)} \sim N_p(0,W_i) \end{array}$$

- What is  $F_t^{(i)}$ ?  $F_t^{(i)} = (x_{1,t}, \dots, x_{p,t})$  if covariates are common to all series, as they will be in the example to follow
- What is  $G_{i,t}$ ?  $G_{i,t} = I_p$
- What is  $V_{i,t}$ ?  $V_{i,t} = V_i$
- What is  $W_{i,t}$ ?  $W_{i,t} = I_p$
- What is  $\theta_t^{(i)} ? \ \theta_t^{(i)} = (\beta_{1,t}^{(i)}, \dots, \beta_{p,t}^{(i)})^\top$

# Simple multivariate dynamic regression

$$y_t = (F_t \otimes I_m)\theta_t + v_t \qquad v_t \stackrel{ind}{\sim} N(0, V)$$
  
$$\theta_t = (G \otimes I_m)\theta_{t-1} + w_t \qquad w_t \stackrel{ind}{\sim} N(0, W)$$

where

$$y_{t} = \begin{bmatrix} y_{1,t} \\ \vdots \\ y_{m,t} \end{bmatrix}, \quad \theta_{t} = \begin{bmatrix} \alpha_{1,t} \\ \vdots \\ \alpha_{m,t} \\ \beta_{1,t} \\ \vdots \\ \beta_{m,t} \end{bmatrix}, \quad v_{t} = \begin{bmatrix} v_{1,t} \\ \vdots \\ v_{m,t} \end{bmatrix}, \quad w_{t} = \begin{bmatrix} w_{1,t} \\ \vdots \\ w_{m,t} \\ \vdots \\ w_{2m,t} \end{bmatrix}$$

with  $F_t = (1, x_t)^{\top}, G = I_2$ , and  $W = \text{blockdiag}(W_{\alpha}, W_{\beta})$ .

#### Data



Jarad Niemi (STAT615@ISU)

#### Model setup

```
> CAPM <- dlmModReg(market)</pre>
> CAPM$FF <- CAPM$FF %x% diag(m)</pre>
> CAPM$GG <- CAPM$GG %x% diag(m)</pre>
> CAPM$JFF <- CAPM$JFF %x% diag(m)</pre>
> CAPM$W <- CAPM$W %x% matrix(0, m, m)</p>
> CAPM$W[-(1 : m), -(1 : m)] <-
     c(8.153e-07, -3.172e-05, -4.267e-05, -6.649e-05,
+
+ -3.172e-05, 0.001377, 0.001852, 0.002884,
+ -4.267e-05, 0.001852, 0.002498, 0.003884,
+ -6.649e-05, 0.002884, 0.003884, 0.006057)
> CAPM$V <- CAPM$V %x% matrix(0, m, m)</p>
> CAPM$Var[] <- c(41.06, 0.01571, -0.9504, -2.328,</pre>
                0.01571, 24.23, 5.783, 3.376,
+
              -0.9504, 5.783, 39.2, 8.145,
+
               -2.328, 3.376, 8.145, 39.29)
+
> CAPMm0 <- rep(0, 2 * m)
> CAPMCO <- diag(1e7, nr = 2 * m)
```

## Smoothing inference

> CAPMsmooth <- dlmSmooth(y, CAPM)</pre>

# Smoothed estimates



# Longitudinal data

Suppose at each time point, you have observations from multiple units, e.g. people, countries, stocks, etc. The data can be represented as a matrix.

|      | Time      |           |     |           |  |  |
|------|-----------|-----------|-----|-----------|--|--|
| ltem | 1         | 2         | ••• | T         |  |  |
| 1    | $Y_{1,1}$ | $Y_{1,2}$ | ••• | $Y_{1,T}$ |  |  |
| 2    | $Y_{2,1}$ | $Y_{2,2}$ | ••• | $Y_{2,T}$ |  |  |
| :    |           | :         |     |           |  |  |
| m    | $Y_{m,1}$ | $Y_{m,2}$ | ••• | $Y_{m,T}$ |  |  |

#### Individual DLMs

$$Y_{i,t} = F_{i,t}\theta_{i,t} + v_{i,t}, \quad v_{i,t} \sim N(0, \sigma_{i,t}^2)$$

SUTSE: Necessary to estimate blocks of  $m \times m$  matrices in the covariance matrix W. Instead:

$$\begin{aligned} \theta_{i,t} &= \lambda_t + \epsilon_{i,t}, & \epsilon_{i,t} \sim N_k(0, \Sigma_t) \\ \lambda_t &= G\lambda_{t-1} + w_t, & w_t \sim N_k(0, W_t) \end{aligned}$$

Hierarchical DLM:

$$\begin{array}{ll} Y_t &= F_{y,t}\theta_t + v_t, & v_t \sim N_m(0,V_{y,t}) \\ \theta_t &= F_{\theta,t}\lambda_t + \epsilon_t, & \epsilon_t \sim N_P(0,V_{\theta,t}) \\ \lambda_t &= G_t\lambda_{t-1} + w_t, & w_t \sim N_k(0,W_t) \end{array}$$

#### **Hierarchical DLMs**

#### Hierarchical DLM:

$$\begin{array}{ll} Y_t &= F_{y,t}\theta_t + v_t, \qquad v_t \sim N_m(0,V_{y,t}) \\ \theta_t &= F_{\theta,t}\lambda_t + \epsilon_t, \qquad \epsilon_t \sim N_P(0,V_{\theta,t}) \\ \lambda_t &= G_t\lambda_{t-1} + w_t, \qquad w_t \sim N_k(0,W_t) \end{array}$$

where

$$\begin{array}{lll} \theta_t &= (\theta_{1,t}^\top,\ldots,\theta_{m,t}^\top)^\top \\ F_{y,t} &= \mathsf{blockdiag}(F_{i,t}) \\ F_{\theta,t} &= [I_p|\cdots|I_p]^\top \\ V_{y,t} &= \mathsf{diag}(\sigma_{i,t}^2) \\ V_{\theta,t} &= \mathsf{blockdiag}(\Sigma_t) \\ G_t &= G \end{array}$$

# Integrating out $\theta_t$

Let's write this as a standard DLM

$$\begin{aligned} Y_t &= F_{y,t} F_{\theta,t} \lambda_t + v_t^*, \qquad v_t^* \sim N_m(0, F_{y,t} V_{\theta,t} F_{y,t}^{\top} + V_{y,t}) \\ \lambda_t &= G_t \lambda_{t-1} + w_t, \qquad w_t \sim N_k(0, W_t) \end{aligned}$$

#### Longitudinal data with common covariates

Suppose at each time point, you have observations from multiple units, e.g. people, countries, stocks, etc., with a common covariate. The data can be represented as a matrix.

|      | Time      |           |       |           |           |
|------|-----------|-----------|-------|-----------|-----------|
| Item | 1         | 2         | • • • | T         | Covariate |
| 1    | $Y_{1,1}$ | $Y_{1,2}$ | • • • | $Y_{1,T}$ | $x_1$     |
| 2    | $Y_{2,1}$ | $Y_{2,2}$ | • • • | $Y_{2,T}$ | $x_2$     |
| 1 :  | ÷         |           |       |           |           |
| m    | $Y_{m,1}$ | $Y_{m,2}$ | •••   | $Y_{m,T}$ | $x_m$     |

Let's allow flexibility in how Y relates to x:

$$E(Y_t|x) = \sum_{j=1}^k \beta_{j,t} h_j(x)$$

where  $h_j(x)$  may be, e.g.

$$\begin{array}{ll} \mathsf{powers} & : h_j(x) = x^j \\ \mathsf{trig} \ \mathsf{functions} & : h_j(x) = a_j \sin(b_j x) \\ \mathsf{cubic} \ \mathsf{splines} & : h_j(x) = a_j + b_j (x - x_j) + c_j (x - x_j)^2 + d_j (x - x_j)^3 \\ \end{array}$$

Then

$$Y_{i,t} = \sum_{j=1}^{k} \beta_{j,t} h_j(x_i) + \epsilon_{i,t}, \qquad \epsilon_{i,t} \sim N(0,\sigma^2).$$

In matrix notation,

$$Y_t = F\beta_t + \epsilon_t, \qquad \epsilon_t \sim N_m(0, V).$$

What are F and V?

Jarad Niemi (STAT615@ISU)

#### Dynamic nonparametric regression

$$\begin{aligned} Y_t &= F\theta_t + \epsilon_t, \qquad \epsilon_t \sim N_m(0, V) \\ \theta_t &= G\theta_{t-1} + w_t, \qquad w_t \sim N_p(0, W_t) \end{aligned}$$

where

$$\theta_t = \beta_t$$

$$F = \begin{bmatrix} h_1(x_1) & \cdots & h_p(x_1) \\ \vdots & & \vdots \\ h_1(x_m) & \cdots & h_p(x_m) \end{bmatrix}$$

$$V = \sigma^2 I_m$$

# Dynamic factor model

$$\begin{array}{ll} Y_t &= A\mu_t + v_t, & v_t \sim N_m(0,V) \\ \mu_t &= \mu_{t-1} + w_t, & w_t \sim N_p(0,W) \end{array}$$

where A is a fixed  $m \times p$  matrix of factor loadings with p < m.

Identifiability of A. Suppose H is a  $p \times p$  invertible matrix. Then

$$\begin{aligned} Y_t &= \tilde{A} \tilde{\mu}_t + v_t, \qquad v_t \sim N_m(0, V) \\ \tilde{\mu}_t &= \tilde{\mu}_{t-1} + \tilde{w}_t, \qquad \tilde{w}_t \sim N_p(0, HWH^\top) \end{aligned}$$

with  $\tilde{\mu}_t = H \mu_t$  and  $\tilde{A} = A H^{-1}$ .

- How many parameters in A? mp
- How many parameters in W?  $\frac{1}{2}p(p+1)$
- Number of free parameters is  $mp \frac{1}{2}p(p-1)$ .

# Identifiable dynamic factor models

One method of enforcing identifiability is

Let W = I<sub>p</sub>,
Let A =  $\begin{bmatrix} L \\ B \end{bmatrix}$  where L is a lower triangular matrix and B can be anything.

• Total parameters are  $mp - \frac{1}{2}p(p-1)$ .

Another method is

• Let W be diagonal

• Let 
$$A_{i,i} = 1$$
 and  $A_{i,j} = 0$  for  $j > i$ .

# Unknown parameters in polynomial trend models

What is known?

• 
$$F_t = (1, 0, \dots, 0)$$

$$G_t = G = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

What are the unknown parameters?

•  $\theta_t$ •  $V_t \stackrel{?}{=} V$ 

•  $W_t \stackrel{?}{=} W$ 

## Unknown parameters in seasonal models

#### What is known?

#### • $F_t$

- Seasonal factor:  $F_t = (1, 0, \dots, 0)$
- Fourier form:  $F_t = (1, 0, 1, 0, \dots, 1, 0)$
- $G_t = G$ 
  - Seasonal factor: rotation matrix
  - Fourier form: block diagonal with blocks  $H_j$

$$H_j = \left[ \begin{array}{c} \cos \omega_j & \sin \omega_j \\ -\sin \omega_j & \cos \omega_j \end{array} \right]$$

What are the unknown parameters?

• 
$$\theta_t$$
  
•  $V_t \stackrel{?}{=} V$ 

0

#### Unknown parameters in dynamic regression models

What is known?

•  $F_t = x_t$ •  $G_t \stackrel{?}{=} G \stackrel{?}{=} I$ 

What are the unknown parameters?

• 
$$\theta_t$$
  
•  $V_t \stackrel{?}{=} V \stackrel{?}{=} \sigma^2 I$  or  $\sigma^2 D$   
•  $W_t \stackrel{?}{=} W \stackrel{?}{=} D$ 

#### Bottom line

# The bottom line is...

- In all of these univariate models,
  - the unknowns are  $\theta_t$ ,  $W_t$ , and  $V_t$ ,
  - $\theta_t$  has always been unknown
  - and often,  $W_t = W$  and  $V_t = V$ .
- In our multivariate models,
  - commonly  $W_t = W$  and  $V_t = V$ , but now they are (block-diagonal) matrices.

For a parameter vector  $\psi$  and data vector y, the likelihood function

 $L(\psi) \propto p(y|\psi).$ 

The maximum likelihood estimate is

$$\hat{\psi} = \operatorname{argmax}_{\psi} L(\psi).$$

Which is equivalent to

$$\hat{\psi} = \mathrm{argmax}_{\psi} \ell(\psi)$$

where  $\ell(\psi) = \log L(\psi)$ .

# Likelihood function for DLMs

If  $\psi = (W, V)$ , what is  $L(\psi)$  for a general DLM? What do we know?

$$p(y_t|\theta_t, V) = N(y_t; F_t\theta_t, V)$$
  

$$p(\theta_t|\theta_{t-1}, W) = N(\theta_t; G_t\theta_{t-1}, W)$$
  

$$p(\theta_0) = N(m_0, C_0)$$

$$p(\theta_t | y_{1:t-1}, \psi) = N(a_t, R_t) p(y_t | y_{1:t-1}, \psi) = N(f_t, Q_t)$$

$$p(y|\psi) = \prod_{t=1}^{n} p(y_t|y_{1:t-1},\psi)$$
# Finding MLEs for DLMs

If  $y_t$  is multivariate, the likelihood function is

$$L(\psi) \propto \prod_{t=1}^{n} \frac{1}{(2\pi)^{k/2} |Q_t|^{1/2}} \exp\left(-\frac{1}{2} (y_t - f_t)^\top Q_t^{-1} (y_t - f_t)\right).$$

Log-likelihood function

$$\ell(\psi) = C + -\frac{1}{2} \sum_{t=1}^{n} \log |Q_t| - \frac{1}{2} \sum_{t=1}^{n} (y_t - f_t)^\top Q_t^{-1} (y_t - f_t).$$

The MLE is then

$$\hat{\psi} = \mathrm{argmax}_{\psi} \ell(\psi)$$

#### The R function dlmMLE does all of this for you.

Jarad Niemi (STAT615@ISU)

Dynamic linear models

# Bayesian inference

What do we have to specify to perform Bayesian inference, i.e. parameter estimation, for data y?

- A statistical model  $p(y|\psi)$
- A prior  $p(\psi)$

What is the objective of Bayesian inference?

• The posterior  $p(\psi|y) \propto p(y|\psi)p(\psi)$ .

# Conjugacy

Conjugate Bayesian inference is one where if

$$\psi \sim f(\alpha) \implies \psi | y \sim f(\alpha').$$

#### Remember the examples

$$\begin{array}{l} \bullet \hspace{0.1cm} y \sim N(\mu,I), \mu \sim N(\cdot,\cdot) \implies \mu | y \sim N(\cdot,\cdot) \\ \bullet \hspace{0.1cm} y \sim N(0,\phi^{-1}I), \phi \sim Ga(\cdot,\cdot) \implies \phi | y \sim Ga(\cdot,\cdot) \\ \bullet \hspace{0.1cm} y \sim N(\mu,\phi^{-1}I), \mu, \phi \sim NG(\cdot) \implies \mu, \phi | y \sim NG(\cdot) \\ \bullet \hspace{0.1cm} y \sim N(X\beta,\phi^{-1}I), \beta, \phi \sim NG(\cdot) \implies \beta, \phi | y \sim NG(\cdot) \\ \bullet \hspace{0.1cm} y \sim Bin(n,p), p \sim Be(\cdot,\cdot) \implies p | y \sim Be(\cdot,\cdot) \end{array}$$

#### What are the unknowns in DLMs?

So for  $\psi = (F_{1:n}, G_{1:n}, W_{1:n}, V_{1:n})$ , we are looking for

$$\psi \sim f(\alpha) \implies \psi | y \sim f(\alpha').$$

This only happens in simple examples. Today, we will discuss

• 
$$V_t = \phi^{-1} \tilde{V}_t, W_t = \phi^{-1} \tilde{W}_t, C_0 = \phi^{-1} \tilde{C}_0$$

•  $W_t$  specified by a discount factor

• Evolving 
$$\phi = 1/\sigma^2$$

 ${\rm common} \ \phi^{-1}$ 

$$\begin{array}{rl} Y_t &= F_t \theta_t + v_t \\ \theta_t &= G_t \theta_{t-1} + w_t \\ p(\theta_0) &= N(m_0, \phi^{-1} \tilde{C}_0) \\ \phi &\sim Ga(\alpha_0, \beta_0) \end{array}$$

$$\begin{aligned} v_t &\sim N_m(0, \phi^{-1} \tilde{V}_t) \\ w_t &\sim N_p(0, \phi^{-1} \tilde{W}_t) \end{aligned}$$

Everything is known except

- $\theta_t$  for all t
- $\bullet \ \phi$

Starting with

$$\theta_{t-1}, \phi | y_{1:t-1} \sim NG(m_{t-1}, \tilde{C}_{t-1}, \alpha_{t-1}, \beta_{t-1})$$

One step ahead prior

$$\theta_t, \phi | y_{1:t-1} \sim NG(a_t, \tilde{R}_t, \alpha_{t-1}, \beta_{t-1})$$
 where  $a_t = G_t m_{t-1}$  and  $\tilde{R}_t = G_t \tilde{C}_{t-1} G_t^\top + \tilde{W}_t$ .

One step ahead predictive density

$$Y_t | y_{1:t-1} \sim t_{2\alpha_{t-1}}(f_t, \tilde{Q}_t \beta_{t-1} / \alpha_{t-1})$$

with  $f_t = F_t a_t$  and  $\tilde{Q}_t = F_t \tilde{R}_t F_t^\top + \tilde{V}_t$ .

Filtering density

$$\theta_t, \phi | y_{1:t} \sim NG(m_t, \tilde{C}_t, \alpha_t, \beta_t)$$

with

$$\begin{split} m_t &= a_t + \tilde{R}_t F_t \tilde{Q}_t^{-1}(y_t - f_t) \\ \tilde{C}_t &= \tilde{R}_t - \tilde{R}_t F_t^\top \tilde{Q}_t^{-1} \tilde{R}_t^\top \\ \alpha_t &= \alpha_{t-1} + \frac{m}{2} \\ \beta_t &= \beta_{t-1} + \frac{1}{2} (y_t - f_t)^\top \tilde{Q}_t^{-1}(y_t - f_t) \end{split}$$

#### Discount factor

Let's specify how adaptive we want our model to be.

- Do this by specifying  $W_t$  relative to  $V_t$  and  $C_t$  using a discount factor  $\delta \in (0, 1]$ .
- $\delta = 1$  means no loss of information, i.e.  $W_t = 0$
- $\delta = 0$  means no information retained
- Often  $\delta > 0.9$

To implement, set

$$W_t = \frac{1-\delta}{\delta} G_t^\top C_{t-1} G_t$$

or

$$\tilde{W}_t = \frac{1-\delta}{\delta} G_t^\top \tilde{C}_{t-1} G_t$$

if using a common  $\sigma^2$ .

#### $W_t$ specified by discount factor

#### Discount factor effect



Jarad Niemi (STAT615@ISU)

Dynamic linear models

#### Choosing the discount factor

Specify  $\delta$  based on one-step ahead prediction errors.

DF MAPE MAD MSE sigma2 1.0 0.10 3.02 21.54 12.00 0.9 0.09 2.86 19.92 9.64 0.8 0.10 2.87 20.29 8.94 0.3 0.11 3.42 25.12 5.07 Last column is posterior expectation for  $\sigma^2$ , i.e.  $E[\sigma^2|y_{1:187}]$ .

#### Inference for $\delta = 0.95$ on Lake Superior Data



## Evolving $\phi_t$

Choose  $\delta^* \in (0,1)$ 

- $\phi_{t-1}|y_{1:t-1} \sim Ga(\alpha_{t-1}, \beta_{t-1})$ •  $\phi_t|y_{1:t-1} \sim Ga(\delta^* \alpha_{t-1}, \delta^* \beta_{t-1})$
- What is
  - $E[\phi_t|y_{1:t-1}] = E[\phi_{t-1}|y_{1:t-1}]$
  - $Var[\phi_t|y_{1:t-1}] = \frac{1}{\delta^*} Var[\phi_{t-1}|y_{1:t-1}]$

#### Evolving $\phi_t$ for Lake Superior data



The situations for conjugate Bayesian analysis are small, therefore we need more advanced techniques.

### Gibbs sampling algorithm

Start with an initial guess for all parameters and call it  $\psi^{(0)}$ . Set j = 1.

1. Sample 
$$\psi_1^{(j)} \sim p\left(\psi_1 | \psi_2^{(j-1)}, \dots, \psi_K^{(j-1)}, y\right)$$
  
2. Sample  $\psi_2^{(j)} \sim p\left(\psi_2 | \psi_1^{(j)}, \psi_3^{(j-1)}, \dots, \psi_K^{(j-1)}, y\right)$   
3. :  
4. Sample  $\psi_k^{(j)} \sim p\left(\psi_k | \psi_1^{(j)}, \dots, \psi_{k-1}^{(j)}, \psi_{k+1}^{(j-1)}, \dots, \psi_K^{(j-1)}, y\right)$   
5. :  
6. Sample  $\psi_{K-1}^{(j)} \sim p\left(\psi_{K-1} | \psi_1^{(j)}, \dots, \psi_{K-2}^{(j)}, \psi_K^{(j-1)}, y\right)$   
7. Sample  $\psi_K^{(j)} \sim p\left(\psi_K | \psi_1^{(j)}, \dots, \psi_{K-1}^{(j)}, y\right)$   
8. If  $j < J, j = j + 1$  and return to step 1.

## What full conditionals are required?

Suppose our goal is to draw from  $p(\theta_{0:T}|y_{1:T})$  using univariate Gibbs sampling. We will implicitly assume conditioning on any other unknown parameters.

- What are the required full condition distributions?
  - $p(\theta_0|\theta_{1:T}, y_{1:T})$
  - $p(\theta_t|\theta_{-t},y_{1:T})$  where  $\theta_{-t}$  is  $\theta_{0:T}$  with the  $t^{th}$  element removed
  - $p(\theta_T | \theta_{0:T-1}, y_{1:T})$

#### DLMs

$$\begin{array}{rcl} Y_t &= F_t \theta_t + v_t & v_t \sim N_m(0,V_t) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0,W_t) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$



#### What are the full conditionals?

$$p(\theta_0|...) = p(\theta_0|\theta_1)$$
  

$$\propto N(\theta_1; G_1\theta_0, W_1)N(\theta_0; m_0, C_0)$$
  

$$\propto N(\theta_0; k_0, K_0)$$
  

$$K_0 = (C_0^{-1} + G_1^{\top} W_1^{-1} G_1)^{-1}$$
  

$$k_0 = K_0(C_0^{-1} m_0 + G_1^{\top} W_1^{-1} \theta_1)$$

$$p(\theta_{T}|...) = p(\theta_{T}|\theta_{T-1}, y_{T})$$

$$\propto N(y_{T}; F_{T}\theta_{T}, V_{T})N(\theta_{T}; G_{T}\theta_{T-1}, W_{T})$$

$$\propto N(\theta_{T}; k_{T}, K_{T})$$

$$K_{T} = (W_{T}^{-1} + F_{T}^{\top}V_{T}^{-1}F_{T})^{-1}$$

$$k_{T} = K_{T}(W_{T}^{-1}G_{T}\theta_{T-1} + F_{T}^{\top}V_{T}^{-1}y_{T})$$

$$\begin{aligned} p(\theta_t|\ldots) &= p(\theta_t|\theta_{t-1}, \theta_{t+1}, y_t) \\ &\propto & N(y_t; F_t\theta_t, V_t) N(\theta_{t+1}; G_{t+1}\theta_t, W_t) N(\theta_t; G_t\theta_{t-1}, W_{t+1}) \\ &\propto & N(\theta_t; k_t, K_t) \\ K_t &= & (W_t^{-1} + F_t^\top V_t^{-1} F_t + G_{t+1}^\top W_{t+1}^{-1} G_{t+1})^{-1} \\ k_t &= & K_t (W_t^{-1} G_t \theta_{t-1} + F_t^\top V_t^{-1} y_t + G_{t+1}^\top W_{t+1}^{-1} \theta_{t+1}) \end{aligned}$$

### Consider the local level model with V = 1 and $W = 0.01^2$ .



t

#### Univariate Gibbs sampling for states



#### Exact quantiles for states



## True underlying state



#### Filtering

Goal:  $p(\theta_t | y_{1:t})$  where  $y_{1:t} = (y_1, y_2, \dots, y_t)$  (filtered distribution)

Recursive procedure:

- Assume  $p(\theta_{t-1}|y_{1:t-1})$
- Prior for  $\theta_t$

$$\begin{split} p(\theta_t | y_{1:t-1}) &= \int p(\theta_t, \theta_{t-1} | y_{1:t-1}) d\theta_{t-1} \\ &= \int p(\theta_t | \theta_{t-1}, y_{1:t-1}) p(\theta_{t-1} | y_{1:t-1}) d\theta_{t-1} \\ &= \int p(\theta_t | \theta_{t-1}) p(\theta_{t-1} | y_{1:t-1}) d\theta_{t-1} \end{split}$$

One-step ahead predictive distribution for y<sub>t</sub>

$$p(y_t | y_{1:t-1}) = \int p(y_t, \theta_t | y_{1:t-1}) d\theta_t$$

$$= \int p(y_t | \theta_t, y_{1:t-1}) p(\theta_t | y_{1:t-1}) d\theta_t$$

$$= \int p(y_t | \theta_t) p(\theta_t | y_{1:t-1}) d\theta_t$$

• Filtered distribution for  $\theta_t$ 

$$p(\theta_t|y_{1:t}) = \frac{p(y_t|\theta_t, y_{1:t-1})p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})} = \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

Jarad Niemi (STAT615@ISU)

Dynamic linear models

October 10, 2017 130 / 224

#### Smoothing

#### $\text{Goal: } p(\theta_t | y_{1:T}) \text{ for } t < T$

• Backward transition probability  $p(\theta_t | \theta_{t+1}, y_{1:T})$ 

$$\begin{aligned} p(\theta_t | \theta_{t+1}, y_{1:T}) &= p(\theta_t | \theta_{t+1}, y_{1:t}) \\ &= \frac{p(\theta_t + 1 | \theta_t, y_{1:t}) p(\theta_t | y_{1:t})}{p(\theta_{t+1} | y_{1:t})} \\ &= \frac{p(\theta_{t+1} | \theta_t) p(\theta_t | y_{1:t})}{p(\theta_{t+1} | y_{1:t})} \end{aligned}$$

• Recursive smoothing distributions  $p(\theta_t | y_{1:T})$  assuming we know  $p(\theta_{t+1} | y_{1:T})$ 

$$\begin{split} p(\theta_t | y_{1:T}) &= \int p(\theta_t, \theta_{t+1} | y_{1:T}) d\theta_{t+1} \\ &= \int p(\theta_{t+1} | y_{1:T}) p(\theta_t | \theta_{t+1}, y_{1:T}) d\theta_{t+1} \\ &= \int p(\theta_{t+1} | y_{1:T}) \frac{p(\theta_{t+1} | \theta_t) p(\theta_t | y_{1:t})}{p(\theta_{t+1} | y_{1:t})} d\theta_{t+1} \\ &= p(\theta_t | y_{1:t}) \int \frac{p(\theta_{t+1} | \theta_t)}{p(\theta_{t+1} | y_{1:t})} p(\theta_{t+1} | y_{1:T}) d\theta_{t+1} \end{split}$$

Start from  $p(\theta_T | y_{1:T})$ .

#### Kalman smoother

If 
$$p(\theta_{t+1}|y_{1:T}) = N(s_{t+1}, S_{t+1})$$
, then  

$$p(\theta_t|\theta_{t+1}, y_{1:T}) = p(\theta_t|\theta_{t+1}, y_{1:t})$$

$$\propto p(\theta_{t+1}|\theta_t, y_{1:t})p(\theta_t|y_{1:t})$$

$$= N(\theta_{t+1}; G_{t+1}\theta_t, W_{t+1})N(\theta_t; m_t, C_t)$$

$$\propto N(\theta_t; h_t, H_t)$$

$$H_t = (C_t^{-1} + G_{t+1}^{\top} W_{t+1}^{-1} G_{t+1})^{-1}$$

$$h_t = H_t(C_t^{-1} m_t + G_{t+1}^{\top} W_{t+1}^{-1} \theta_{t+1})$$

$$p(\theta_t|y_{1:T}) = \int p(\theta_t|\theta_{t+1}, y_{1:T})p(\theta_{t+1}|y_{1:T})d\theta_{t+1}$$

$$= N(\theta_t; s_t, S_t)$$

$$S_t = C_t - C_t G_{t+1}^{\top} R_{t+1}^{-1} (R_{t+1} - S_{t+1}) R_{t+1}^{-1} G_{t+1}C_t$$

$$s_t = m_t + C_t G_{t+1}^{\top} R_{t+1}^{-1} (s_{t+1} - a_{t+1})$$

## True underlying state



Let  $\psi$  represent any unknown, non-dynamic model parameters such that the data follows a DLM conditional on  $\psi$ .

$$\begin{array}{lll} Y_t &= F_t(\psi)\theta_t + v_t & v_t \sim N_m(0, V_t(\psi)) \\ \theta_t &= G_t(\psi)\theta_{t-1} + w_t & w_t \sim N_p(0, W_t(\psi)) \\ p(\theta_0) &= N(m_0(\psi), C_0(\psi)) \end{array}$$

For example,  $\psi = (V, W)$  where  $V_t(\psi) = V$  and  $W_t(\psi) = W$  while  $F_t(\psi) = F$  and  $G_t(\psi) = G$  are known, as in polynomial trend, seasonal factor, and dynamic regression models.

- The Bayesian inferential objective is then  $p(\theta_{0:T}, \psi | y_{1:T})$ .
- While  $p(\theta_{0:T}|y_{1:T},\psi)$  is known analytically, generally  $p(\theta_{0:T},\psi|y_{1:T})$  is not.
- So resort to numerical methods, most often MCMC

### MCMC Schemes

#### Scheme I - all univariate samples

- For  $t \in \{0, 1, \ldots, T\}$  sample  $p(\theta_t | \ldots)$ .
- For  $j \in \{1, \ldots, J\}$  sample  $p(\psi_j | \ldots)$  for J parameters.

Scheme II - block sampling of states

- Sample  $p(\theta_{0:T}|\ldots)$ .
- For  $j \in \{1, \ldots, J\}$  sample  $p(\psi_j | \ldots)$  for J parameters.

#### MCMC Schemes

# MCMC Schemes (cont.)

Scheme III - block sampling of parameters

- Sample  $p(\theta_{0:T}|\ldots)$ .
- Sample  $p(\psi|\ldots)$ .
- e.g. polynomial trend, seasonal factor, and dynamic regression models

Scheme IV - hybrid

- Sample  $p(\psi_{J'}|\psi_{J\setminus J'}, y_{1:T})$  for some subset J' of parameters.
- Sample  $p(\theta_{0:T}|\ldots)$ .
- Sample  $p(\psi_{J \setminus J'} | \ldots)$ .

### MCMC Schemes

Generally better to jointly sampling unknowns, a.k.a. block sampling.

- Scheme I has all univariate draws
- Scheme II samples latent state jointly
- Scheme III samples latent state jointly and parameters jointly
- Scheme IV samples some parameters  $\psi_{J'}$  and all latent states jointly and then samples remaining parameters jointly

Bottom line: if parameters are highly correlated in the posterior, it is better to sample those parameters jointly.

#### Algorithm

# Forward filtering backward sampling (FFBS)

Recall

- $p(\theta_T|y_{1:T}) = N(m_T, C_T)$  is available from filtering
- $p(\theta_t | \theta_{t+1}, y_{1:T}) = N(h_t, H_T)$  is available from smoothing

$$H_t = (C_t^{-1} + G_{t+1}^{\top} W_{t+1}^{-1} G_{t+1})^{-1}$$
  

$$h_t = H_t (C_t^{-1} m_t + G_{t+1}^{\top} W_{t+1}^{-1} \theta_{t+1})^{-1}$$

The algorithm is then

- Forward filter to obtain  $p(\theta_t|y_{1:t}) = N(m_t, C_t)$  for all t.
- Sample  $\theta_T \sim H(m_T, C_T)$ .
- For  $t \in \{T 1, T 2, \dots, 1, 0\}$ ,
  - Calculate  $h_t$  and  $H_t$  based on  $\theta_{t+1}$ .
  - Draw  $\theta_t \sim N(h_t, H_T)$ .

#### Local level model



#### Local level model



#### Local level model - unknown variances

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N_m(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N_p(0,W) \\ p(\theta_0) &= N(m_0,C_0) \end{array}$$

MCMC Scheme:

- Sample  $p(\theta_{0:T}|...)$  using FFBS
- Sample  $p(V, W| \ldots)$

#### Nile river level



#### Nile river level



#### Nile river level


# MCMC in DLMs

Recall the inferential objective of the Bayesian approach in DLMs:

 $p(\theta_{0:n}, \psi | y_{1:n})$ 

Since  $p(\theta_{0:n}, \psi | y_{1:n})$  is not typically available analytically, we commonly use Markov chain Monte Carlo. These approaches sample from full conditional distributions, e.g.

• 
$$p(\theta_t | \theta_{-t}, \psi, y_{1:n})$$
 for  $t = 0, 1, 2, \dots, n$ .

• 
$$p(\psi_j | \theta_{0:n}, \psi_{-j}, y_{1:n})$$
 for  $j = 1, 2, \dots, J$ .

These draws could be Gibbs or Metropolis-Hastings.

# MCMC Univariate Sampling Activity

Fill in ? with i or i - 1.  $\theta_{0}^{(?)} \sim p(\theta_{0}|\theta_{1}^{(?)},\dots,\theta_{n}^{(?)},\psi^{(?)},y_{1:n})$ For  $t \in 1, \ldots, n-1$ , sample from  $\theta_{t}^{(?)} \sim p(\theta_{t}|\theta_{0}^{(?)},\ldots,\theta_{t-1}^{(?)},\theta_{t+1}^{(?)},\ldots,\theta_{n}^{(?)},\psi^{(?)},y_{1:n})$  $\theta_n^{(?)} \sim p(\theta_n | \theta_n^{(?)}, \dots, \theta_{n-1}^{(?)}, \psi^{(?)}, y_{1:n})$  $\psi_1^{(?)} \sim p(\psi_1 | \theta^{(?)}, \psi_2^{(?)}, \dots, \psi_L^{(?)}, y_{1:n})$ For  $i \in 2, \ldots, J-1$ , sample from  $\psi_{j}^{(?)} \sim p(\psi_{j}|\theta^{(?)},\psi_{1}^{(?)},\ldots,\psi_{j-1}^{(?)},\psi_{j+1}^{(?)},\ldots,\psi_{J}^{(?)},y_{1:n})$  $\psi_{j}^{(?)} \sim p(\psi_{J}|\theta^{(?)},\psi_{1}^{(?)},\ldots,\psi_{J}^{(?)},y_{1:n})$ 

# Convergence to stationary distribution

The samples  $(\theta^{(i)}, \psi^{(i)})$  converge to samples from  $p(\theta_{0:n}, \psi|y_{1:n})$ , regardless of what  $(\theta^{(0)}, \psi^{(0)})$  was.

Let's look at an example: local level model.

$$\begin{array}{rcl} Y_t &= \theta_t + v_t & v_t \sim N(0,2) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,0.5) \\ p(\theta_0) &= N(0,1) \end{array}$$

with  $y_1 = 1$ . The objective is  $p(\theta_0, \theta_1 | y_1)$ .

# Local level convergence example



MCMC

#### DLMs

# Traceplots



DLMs

# Running average



DLMs

## Auto-correlation plots



# MCMC Convergence diagnostics

- Graphical techniques
  - Traceplots
  - Ergodic mean
- Non-graphical techniques
  - Geweke diagnostic single chain
  - Gelman/Rubin diagnostic multiple chains

#### Lack of convergence

We can never know if our chain has converged.

All convergence diagnostics detect a lack of convergence.

So instead of saying 'the chain has converged' you should be saying 'the chain shows no lack of convergence'.

# Burn-in

#### Definition

Burn-in is the number of MCMC iterations before the chain shows no lack of convergence.

Burn-in is thrown-out to eliminate the bias associated with the starting point.

#### Burn-in example



Jarad Niemi (STAT615@ISU)

Dynamic linear models

# Burn-in

#### Definition

Burn-in is the period of time before the chain has converged.

Burn-in is thrown-out to eliminate the bias associated with the starting point.

If the starting point is crucial, why not start multiple chains in different locations? With the local level model, start chain 1 at (-2000, 3000) and start chain 2 at (3000, -2000).

Burn-in

# Multiple chains



Running average

# Gelman-Rubin diagnostic

- Start multiple chains at locations that are overdispersed relative to the posterior.
- ANOVA comparison
  - Within-chain versus between-chain variances
  - Represented as a scale reduction factor such that values around 1 indicate no lack of convergence.

# Local level model example



Overdispersed starting points

θο

Jarad Niemi (STAT615@ISU)

### Local level model example - 100 iterations

In package coda, use function gelman.diag.



# Local level model example - 1000 iterations

In package coda, use function gelman.diag.



# Iterations for inference

Now that no lack of convergence is apparent, how long should I run my chain?

- The longer you run the chain, the lower your Monte Carlo error.
- Monte Carlo error reduces by the  $\sqrt{N}$  where N is the number of MCMC iterations.
- So, if you want a 10-fold decrease in Monte Carlo error, you need to run  $10^2$  times your current number of iterations.

#### Length of chain

# Simple Monte Carlo example

Consider the model  $y_i \stackrel{ind}{\sim} N(\mu, 1)$  and our goal is to estimate  $E[y_i] = \mu$ . The Monte Carlo approximation is

$$\mu \approx \mu_{MC} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

with the variance of this approximation given by

$$se(\mu_{MC}) \approx \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (y_i - \mu_{MC})^2} = \frac{1}{\sqrt{n}} sd_y$$

where  $sd_y$  is the standard deviation of the sample  $y = (y_1, y_2, \dots, y_n)$ . Since this standard deviation converges to 1, by our model assumption above, the standard error of the Monte Carlo estimate decrease by the square root of n.

Jarad Niemi (STAT615@ISU)

# Simple Monte Carlo example

At 176 simulations, the standard error of  $\mu_{MC}$  is ~ 0.07. To decrease this to 0.007 (an order of magnitude increase in accuracy), we would need to take a total of  $176 \cdot 10^2 = 17600$  simulations.



Jarad Niemi (STAT615@ISU)

Dynamic linear models

October 10, 2017 164 / 224

## Iterations for inference



#### Work flow

# Work flow

- Exploratory data analysis
- Define a model with priors
- Fit the model using MLE techniques
- Inference
  - Fit in WinBUGS
  - Code it up in R/C
    - Choose an MCMC scheme
    - Find the full conditional distributions (if available)
  - Monitor chain convergence
  - Summarize the posterior
- Model checking
  - Diagnostic plots to evaluate model assumptions, e.g. one-step head forecasts



- Nile flow local level model
- Spain/Denmark investments SUTSE

#### The data

# Nile river level



# Nile river level



Series Nile

#### Local level model

$$\begin{array}{ll} Y_t &= \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim N(0,W) \end{array}$$

$$V \sim IG(a_V, b_V) W \sim IG(a_W, b_W) \theta_0 \sim N(m_0, C_0)$$

where  $p(V, W, \theta_0) = p(V)p(W)p(\theta_0)$  and  $v_t$  and  $w_t$  are independent across time and mutually independent of each other as well as independent of  $\theta_0$ .

1

### Non-informative priors

$$V \sim IG(a_V, b_V) W \sim IG(a_W, b_W) \theta_0 \sim N(m_0, C_0)$$

Non-informative prior

$$V \propto 1/V \implies a_V = b_V = 0$$
  

$$W \propto 1/W \implies a_W = b_W = 0$$
  

$$\theta_0 \propto 1 \implies m_0 = 0, C_0 = \infty$$

#### The model

# Informative variance priors

Informative prior for V (or W), E[V] = 5 with varying accuracy



Jarad Niemi (STAT615@ISU)

#### Informative state prior

"On average, the Nile flow is around 920  $\pm$  340." With what probability?



Jarad Niemi (STAT615@ISU)

# MCMC scheme

In DLMs, conditional on unknown parameters, we can sample from the joint state vector at all times using FFBS.

- $p(\theta_{0:T}|V, W, y_{1:T})$  (for references see page 161 of Petris et al.)
- $p(V|\theta_{0:T}, W, y_{1:T})$
- $p(W|\theta_{0:T}, V, y_{1:T})$

# Full conditional distributions - the hard way

$$p(V|\theta_{0:T}, W, y_{1:T}) \propto \prod_{t=1}^{T} p(y_t|\theta_t, V) p(\theta_t|\theta_{t-1}, W) p(V) p(W) p(\theta_0) \propto \prod_{t=1}^{T} p(y_t|\theta_t, V) p(V) = \prod_{t=1}^{T} N(y_t; \theta_t, V) IG(V; a_V, b_V) \propto V^{-T/2} \exp\left(-\frac{1}{2V} \sum_{t=1}^{T} (y_t - \theta_t)^2\right) V^{-a_V - 1} \exp\left(-b_V/V\right) = V^{-(a_V + T/2) - 1} \exp\left(-\left[b_V + \frac{1}{2} \sum_{t=1}^{T} (y_t - \theta_t)^2\right]/V\right) \propto IG\left(a_V + T/2, b_V + \frac{1}{2} \sum_{t=1}^{T} (y_t - \theta_t)^2\right)$$

# Full conditional distributions - the hard way

$$p(W|\theta_{0:T}, V, y_{1:T}) \propto \prod_{t=1}^{T} p(y_t|\theta_t, V) p(\theta_t|\theta_{t-1}, W) p(V) p(W) p(\theta_0) \propto \prod_{t=1}^{T} p(\theta_t|\theta_{t-1}, W) p(W) = \prod_{t=1}^{T} N(\theta_t; \theta_{t-1}, W) IG(W; a_W, b_W) \propto W^{-T/2} \exp\left(-\frac{1}{2W} \sum_{t=1}^{T} (\theta_t - \theta_{t-1})^2\right) W^{-a_W - 1} \exp\left(-b_W/W\right) = V^{-(a_W + T/2) - 1} \exp\left(-\left[b_W + \frac{1}{2} \sum_{t=1}^{T} (\theta_t - \theta_{t-1})^2\right]/W\right) \propto IG\left(a_W + T/2, b_W + \frac{1}{2} \sum_{t=1}^{T} (\theta_t - \theta_{t-1})^2\right)$$

Jarad Niemi (STAT615@ISU)

#### Inference

# Full conditional distributions - the easy way

Recall from HW 1b, if  $\sigma^2 \sim IG(a,b)$  and  $x_i \overset{ind}{\sim} N(0,\sigma^2)$ , then

$$p(\sigma^2|x_1, x_2, \dots, x_n) = IG\left(a + n/2, b + \frac{1}{2}\sum_{t=1}^n x_t^2\right).$$

Notice

$$V \sim IG(a_V, b_V)$$
  

$$v_t = y_t - \theta_t \stackrel{ind}{\sim} N(0, V)$$
  

$$p(V|y_{1:T}, \theta_{0:T}, W) = p(V|y_{1:T}, \theta_{1:T})$$
  

$$= IG(a_V + T/2, b_V + \frac{1}{2} \sum_{t=1}^T v_t^2)$$

$$W \sim IG(a_{W}, b_{W})$$
  

$$w_{t} = \theta_{t} - \theta_{t-1} \approx N(0, W)$$
  

$$p(W|y_{1:T}, \theta_{0:T}, V) = p(W|\theta_{1:T})$$
  

$$= IG(a_{W} + T/2, b_{W} + \frac{1}{2} \sum_{t=1}^{T} w_{t}^{2})$$

Dynamic linear models

177 / 224

# MCMC scheme revisited

• 
$$p(\theta_{0:T}|...)$$
 using FFBS  
•  $p(V|...) = IG(a_V + T/2, b_V + \frac{1}{2}\sum_{t=1}^T v_t^2)$   
•  $p(W|...) = IG(a_W + T/2, b_W + \frac{1}{2}\sum_{t=1}^T w_t^2)$ 

Notice that  $p(V|\ldots)$  doesn't depend on W and  $p(W|\ldots)$  doesn't depend on V. So our scheme is actually

- $p(\theta_{0:T}|\ldots)$  using FFBS
- $p(V, W|...) = IG(a_V + T/2, b_V + \frac{1}{2} \sum_{t=1}^T v_t^2) IG(a_W + T/2, b_W + \frac{1}{2} \sum_{t=1}^T w_t^2)$

# Coding it up

Begin by creating a function to draw from the posterior of a conjugate inverse gamma

```
drawIGpost <- function(x, a=0, b=0) {
  return(rinvgamma(1, a+length(x)/2, b+sum(x^2)/2))
}</pre>
```

# Coding it up

Begin by creating a function to draw from the posterior of a conjugate inverse gamma

```
for (i in 1:n.reps) {
  cat(i,"\n")
  # Sample states
  mod <- dlmModPoly(1, dV=V, dW=W)
  filt <- dlmFilter(Nile, mod)
  theta <- dlmBSample(filt)
  # Sample V and W</pre>
```

```
V <- drawIGpost(y-theta[-1])</pre>
```

```
W <- drawIGpost(theta[-1]-theta[-n])</pre>
```

```
# Save iterations
V.reps[i] <- V
W.reps[i] <- W
theta.reps[i,] = theta</pre>
```

}
## Running the MCMC

### • Run 1

- Run 1 chain starting from the MLEs
- Check traceplots for this run
- Obtain posterior summaries for model parameters
- Choose initial values that are < minimum and > maximum for each model parameter
- Multi-runs
  - Start multiple chains from combinations of these values
  - Check traceplots and Gelman-Rubin diagnostic for these chains
  - Discard burn-in and produce posterior summaries on remaining iterations
  - If more iterations are needed, initialize new chains from the last iteration of the old chains

### Monitoring convergence

Use plot.mcmc in coda package.



Jarad Niemi (STAT615@ISU)

Dynamic linear models

Iterations

N = 5000 Bandwidth = 9.978

### Monitoring convergence

Use plot.mcmc in coda package.





Jarad Niemi (STAT615@ISU)

Dynamic linear models

### Monitoring convergence

Use plot.mcmc in coda package.



Jarad Niemi (STAT615@ISU)

0 1000 2000 3000 4000 5000

Iterations

Dynamic linear models

900 1000 1100 1200 1300

N = 5000 Bandwidth = 7.019

October 10, 2017 184 / 224

### Gelman-Rubin diagnostic

> gelman.diag(window(mcmc.results,1,4000))
Potential scale reduction factors:

|        | Point | est. | 97.5% | quantile |
|--------|-------|------|-------|----------|
| V.reps |       | 1.00 |       | 1.00     |
| W.reps |       | 1.00 |       | 1.00     |
|        |       | 1.00 |       | 1.00     |
|        |       | 1.00 |       | 1.00     |
|        |       |      |       |          |
|        |       | 1.00 |       | 1.01     |
|        |       | 1.00 |       | 1.00     |

Multivariate psrf

1.01

> summary(window(mcmc.results,4001,5000))

```
Iterations = 4001:5000
Thinning interval = 1
Number of chains = 4
Sample size per chain = 1000
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

|        | Mean    | SD      | Naive SE | Time-series SE |
|--------|---------|---------|----------|----------------|
| V.reps | 15642.8 | 3187.29 | 50.3955  | 125.8969       |
| W.reps | 1630.4  | 1449.03 | 22.9111  | 100.2639       |
|        | 1107.9  | 73.84   | 1.1676   | 1.3148         |
|        | 1108.7  | 62.93   | 0.9951   | 1.1196         |

2. Quantiles for each variable:

|        | 2.5%   | 25%     | 50%     | 75%     | 97.5%   |
|--------|--------|---------|---------|---------|---------|
| V.reps | 9854.5 | 13459.2 | 15450.6 | 17640.9 | 22337.6 |
| W.reps | 241.2  | 651.7   | 1183.1  | 2092.0  | 5529.9  |
|        | 964.9  | 1060.0  | 1106.7  | 1153.6  | 1261.0  |
|        | 987.1  | 1066.5  | 1107.5  | 1149.0  | 1238.8  |

Jarad Niemi (STAT615@ISU)







### Summaries of functions of parameters

The posterior for  $f(\psi)$  is available using the MCMC simulations by plugging our iterations  $\psi^{(i)}$  into  $f(\cdot)$  and calculating desired quantities, e.g.

$$E[f(\psi)] \approx \frac{1}{n} \sum_{i=1}^{n} f(\psi^{(i)}).$$

For example,

• 
$$f(\theta_{0:T}, V, W) = \sqrt{(V)}$$

• 
$$f(\theta_{0:T}, V, W) = \sqrt{(W)}$$

•  $f(\theta_{0:T}, V, W) = W/V$  (signal-to-noise ratio)

• 
$$f(\theta_{0:T}, V, W) = P(W/V < 1)$$

### Standard deviations



Jarad Niemi (STAT615@ISU)

### Signal-to-noise ratio



Signal-to-noise ratio (r=W/V)

$$P(r < 1) = 0.998$$

Dynamic linear models

$$\begin{array}{ll} Y_t &= F_t \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0,W) \end{array}$$

where V is scalar and W is diagonal with elements  $W_i$  and assumed priors

$$p(V, W_1, \dots, W_p, \theta_0) = p(V)p(\theta_0) \prod_{i=1}^p p(W_i)$$

$$V \sim IG(a_V, b_V)$$

$$W_i \sim IG(a_{W_i}, b_{W_i})$$

$$\theta_0 \sim N(m_0, C_0)$$

### Linear trend model

For example

$$\begin{array}{ll} Y_t &= F\theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= G\theta_{t-1} + w_t & w_t \sim N_p(0,W) \end{array}$$

where  $F=(1,0),\ G[1,1]=G[1,2]=G[2,2]=1,\ G[2,1]=0,$  and W is diagonal with elements  $W_i$  and assumed priors

$$p(V, W_1, \dots, W_p, \theta_0) = p(V)p(\theta_0)p(W_1)p(W_2)$$

$$V \sim IG(a_V, b_V)$$

$$W_1 \sim IG(a_{W_1}, b_{W_1})$$

$$W_2 \sim IG(a_{W_2}, b_{W_2})$$

$$\theta_0 \sim N(m_0, C_0)$$

### Rewrite the linear trend model

$$\begin{array}{ll} Y_t &= \mu_t + v_t & v_t \sim N(0, \sigma^2) \\ \mu_t &= \mu_{t-1} + \beta_t + w_{t,1} & w_{t,1} \sim N(0, \sigma^2_\mu) \\ \beta_t &= \beta_{t-1} + w_{t,2} & w_{t,2} \sim N(0, \sigma^2_\beta) \end{array}$$

where  $w_{t,1}$  and  $w_{t,2}$  are independent.

What are the full conditionals for 
$$\sigma^2$$
,  $\sigma^2_{\mu}$ , and  $\sigma^2_{\beta}$ ?  
•  $p(\sigma^2|...) = IG\left(a_{\sigma^2} + T/2, b_{\sigma^2} + \frac{1}{2}\sum_{t=1}^T v_t^2\right)$   
•  $p(\sigma^2_{\mu}|...) = IG\left(a_{\sigma^2_{\mu}} + T/2, b_{\sigma^2_{\mu}} + \frac{1}{2}\sum_{t=1}^T w_{t,1}^2\right)$   
•  $p(\sigma^2_{\beta}|...) = IG\left(a_{\sigma^2_{\beta}} + T/2, b_{\sigma^2_{\beta}} + \frac{1}{2}\sum_{t=1}^T w_{t,2}^2\right)$ 

and importantly, they are independent!

### More generally

$$\begin{array}{ll} Y_t &= F_t \theta_t + v_t & v_t \sim N(0,V) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p(0,W) \end{array}$$

where W is diagonal with elements  $W_i$  and all variances have independent inverse gamma priors.

The full conditionals for parameters are

• 
$$p(V|\ldots) = IG\left(a_V + T/2, b_V + \frac{1}{2}\sum_{t=1}^T v_t^2\right)$$
  
•  $p(W_i|\ldots) = IG\left(a_{W_i} + T/2, b_{W_i} + \frac{1}{2}\sum_{t=1}^T w_{t,i}^2\right)$ 

and again, they are independent!

### MCMC scheme for models with d inverse gamma priors

Two-stage Gibbs sampler

- Use FFBS to sample from  $p(\theta_{0:T}|\ldots)$
- $\bullet$  Jointly sample  $V, W_1, \ldots, W_p$  by sampling their full conditionals
  - $p(V|\ldots)$
  - $p(W_i|...)$  for  $i \in (1, 2, ..., p)$ .

Implemented in dlmGibbsDIG.

Model

Suppose we assume the model

$$\begin{aligned} Y_t &= F_t \theta_t + v_t & v_t \sim N_m \left( 0, \Phi_0^{-1} \right) \\ \theta_t &= G_t \theta_{t-1} + w_t & w_t \sim N_p \left( 0, \Phi_1^{-1} \right) \end{aligned}$$

where  $\Phi_0$  is an  $m \times m$  observation precision matrix and  $\Phi_1$  is a  $p \times p$ evolution precision matrix. It will be convenient to choose independent Wishart distributions for the prior for these precision matrices, i.e.

$$p(\Phi_0, \Phi_1) = p(\Phi_0) p(\Phi_1) = \mathcal{W}(\Phi_0; \nu_0, S_0) \mathcal{W}(\Phi_1; \nu_1, S_1)$$

where

$$\mathcal{W}(P;\nu,S) = \frac{|S|^{\nu}|P|^{\frac{\nu-p-1}{2}}}{\Gamma_p(\nu)} \exp\left(-tr(SP)\right)$$

is a distribution on symmetric, positive definite matrices P with parameters  $\nu > (p-1)/2$  and S, symmetric non-singular matrix.

### Full conditionals for the precision matrices

Wishart distributions are conditionally conjugate in this model:

$$p\left(\Phi_{0}|\ldots\right) = \mathcal{W}\left(\nu_{0} + T/2, S_{0} + \frac{1}{2}SS_{y}\right)$$
$$SS_{y} = \sum_{t=1}^{T} \left(y_{t} - F_{t}\theta_{t}\right) \left(y_{t} - F_{t}\theta_{t}\right)^{\top}.$$

where  $SS_y = \sum_{t=1}^{I} (y_t - F_t \theta_t) (y_t - F_t \theta_t)$ 

$$p\left(\Phi_{1}|\ldots\right) = \mathcal{W}\left(\nu_{1} + T/2, S_{1} + \frac{1}{2}SS_{\theta}\right)$$
  
where  $SS_{\theta} = \sum_{t=1}^{T} \left(\theta_{t} - G_{t}\theta_{t-1}\right) \left(\theta_{t} - G_{t}\theta_{t-1}\right)^{\top}$ .

Again,  $p(\Phi_0, \Phi_1 | ...) = p(\Phi_0 | ...) p(\Phi_1 | ...).$ 

To draw from these distributions, use rwishart in dlm package which has arguments degrees of freedom  $\delta$  and scale matrix  $V_0^{-1}$  where  $\mathcal{W}(\delta/2, V_0/2).$ 

Jarad Niemi (STAT615@ISU)

Consider the model with block-diagonal evolution covariance:

$$Y_t = F_t \theta_t + v_t \qquad v_t \sim N_m(0, \Phi_0^{-1})$$
  
$$\theta_t = G_t \theta_{t-1} + w_t \qquad w_t \sim N_{p*}(0, W)$$

where W is block-diagonal with elements  $W_i$ . Set  $\Phi_i^{-1} = W_i$  and give  $\Phi_0, \Phi_1, \ldots, \Phi_d$  independent Wishart priors  $\Phi_i \sim \mathcal{W}(\nu_i, S_i)$ .

### Rewritten univariate model

For combining individual components, e.g. polynomial trend, seasonal, dynamic regression,  $G_t$  is block diagonal with elements  $G_{i,t}$  relating to  $W_i$ and the model can be re-written

$$\begin{array}{lll} Y_t &= F_t \theta_t + v_t & v_t \sim N(0, \Phi_0^{-1}) \\ \theta_{1,t} &= G_{1,t} \theta_{1,t-1} + w_{1,t} & w_{1,t} \sim N_{p_1}(0, \Phi_1^{-1}) \\ &\vdots \\ \theta_{i,t} &= G_{i,t} \theta_{i,t-1} + w_{i,t} & w_{i,t} \sim N_{p_i}(0, \Phi_i^{-1}) \\ &\vdots \\ \theta_{p,t} &= G_{p,t} \theta_{p,t-1} + w_{p,t} & w_{p,t} \sim N_{p_d}(0, \Phi_d^{-1}) \end{array}$$

where  $w_{i,t}$  are independent across *i*. Then

$$SS_{ii,t} = (\theta_{i,t} - G_{i,t}\theta_{i,t-1})(\theta_{i,t} - G_{i,t}\theta_{i,t-1})^{\top}.$$

### Multivariate models

### Let

$$SS_t = (\theta_t - G_t \theta_{t-1})(\theta_t - G_t \theta_{t-1})^\top$$

and partition it according to

$$SS_t = \begin{bmatrix} SS_{11,t} & \cdots & SS_{1d,t} \\ \vdots & \ddots & \vdots \\ SS_{d1,t} & \cdots & S_{dd,t} \end{bmatrix}$$

where the partition is according to the partition in  $\Phi = \mathsf{blockdiag}(\Phi_1, \ldots, \Phi_d).$ 

### Full conditional distributions

$$p\left(\Phi_0^{-1}|\ldots\right) = \mathcal{W}\left(\nu_0 + T/2, S_0 + \frac{1}{2}SS_y\right)$$
  
where  $SS_y = \sum_{t=1}^T \left(y_t + F_t\theta_t\right) \left(y_t - F_t\theta_t\right)^\top$ .

$$p\left(\Phi_{i}^{-1}|\ldots\right) = \mathcal{W}\left(\nu_{i} + T/2, S_{i} + \frac{1}{2}SS_{\theta_{i}}\right)$$

where  $SS_{\theta_i} = \sum_{t=1}^{T} SS_{ii,t}$  given on the previous page.

Once again,  $p\left(\Phi_{0}^{-1}, \Phi_{1}^{-1}, \dots, \Phi_{d}^{-1}| \dots\right) = p\left(\Phi_{0}^{-1}| \dots\right) \prod_{i=1}^{d} p\left(\Phi_{i}^{-1}| \dots\right)$ .

### Denmark and Spain investments



#### Model

### SUTSE model

$$\begin{aligned} Y_t &= (F \otimes I_2)\theta_t + v_t & v_t \sim N_2(0, \Phi_0^{-1}) \\ \theta_t &= (G \otimes I_2)\theta_{t-1} + w_t & w_t \sim N_4(0, W) \end{aligned}$$

where  $W = \text{blockdiag}(W_1, W_2)$ ,  $\Phi_1^{-1} = W_1$ , and  $\Phi_2^{-1} = W_2$ .

### Assume independent Wishart priors

$$p(\Phi_0) = \mathcal{W}\left(\frac{\delta_0+1}{2}, \frac{1}{2}V_0\right) \qquad V_0 = (\delta_0 - 2) \begin{bmatrix} 10^2 & 0\\ 0 & 500^2 \end{bmatrix}$$
$$p(\Phi_1) = \mathcal{W}\left(\frac{\delta_1+1}{2}, \frac{1}{2}W_{\mu,0}\right) \qquad W_{\mu,0} = (\delta_1 - 2) \begin{bmatrix} 0.01^2 & 0\\ 0 & 0.01^2 \end{bmatrix}$$
$$p(\Phi_2) = \mathcal{W}\left(\frac{\delta_2+1}{2}, \frac{1}{2}W_{\beta,0}\right) \qquad W_{\beta,0} = (\delta_2 - 2) \begin{bmatrix} 5^2 & 0\\ 0 & 100^2 \end{bmatrix}$$

where  $\delta_0 = \delta_2 = 3$  and  $\delta_1 = 100$ .

#### MCMC

## MCMC sampling

MCMC Scheme:

- Sample  $\theta_{0:T} \sim p(\theta_{0:T}|...)$  using FFBS
- Sample  $p(\Phi_0, \Phi_1, \Phi_2 | \ldots)$  jointly

$$p(\Phi_0|...) = \mathcal{W}\left(\frac{\delta_0 + 1 + T}{2}, \frac{1}{2}(V_0 + SS_y)\right)$$
  

$$p(\Phi_1|...) = \mathcal{W}\left(\frac{\delta_1 + 1 + T}{2}, \frac{1}{2}(W_{\mu,0} + SS_{1.})\right)$$
  

$$p(\Phi_2|...) = \mathcal{W}\left(\frac{\delta_2 + 1 + T}{2}, \frac{1}{2}(W_{\beta,0} + SS_{2.})\right)$$

where

$$SS_{i\cdot} = \sum_{t=1}^{T} SS_{ii,t}.$$

### provided earlier.

### Convergence and autocorrelation



Jarad Niemi (STAT615@ISU)

### MCMC

### Convergence



Jarad Niemi (STAT615@ISU)

Dynamic linear models

October 10, 2017 208 / 224

### MCMC

### Convergence



Jarad Niemi (STAT615@ISU)

Dynamic linear models

October 10, 2017 209 / 224

### Posterior covariance expectations

$$E[V|y_{1:T}] = \begin{bmatrix} 86 & (1) & 1026 & (23) \\ & 59340 & (807) \end{bmatrix}$$
$$E[W_{\mu}|y_{1:T}] = 1e - 5 \begin{bmatrix} 9.97 & (0.02) & 0.016 & (0.014) \\ & 10.04 & (0.02) \end{bmatrix}$$
$$E[W_{\beta}|y_{1:T}] = \begin{bmatrix} 38.3 & (0.8) & 305 & (41) \\ & 311073 & (2346) \end{bmatrix}$$

## Posterior $\mu_t$



### Types of missing data

Complete data  $Y_{i,t}$  and missing indicator  $M_{i,t}$  where  $M_{i,t} = 1$  if observation  $Y_{it}$  is missing and 0 otherwise. Let  $Y_{obs}$  contain all the data that is observed while  $Y_{mis}$  contains all the data that is missing with  $Y = (Y_{obs}, Y_{mis})$ . Then several types of missing-ness are possible:

• Missing completely at random (MCAR)

$$p(M|Y,\phi) = p(M|\phi).$$

• Missing at random (MAR)

$$p(M|Y,\phi) = p(M|Y_{obs},\phi).$$

Not missing at random

 $p(M|Y,\phi)$  depends on  $Y_{mis}$ .

### No missing data



### Missing completely at random





## Not missing at random

Not missing at random (NMAR)



### Missing data in multivariate DLMs

Two situations:

- Totally missing: at time t,  $Y_t$  is completely missing
- Partially missing: at time t, part of  $Y_t$  is observed

### Totally missing

Recall 'Kalman filter' lecture: missing data are handled trivially while filtering.

$$m_t = a_t \qquad C_t = R_t.$$

Unknown fixed parameters are sampled without these data, e.g. scalar V

$$p(\phi_V|\ldots) = G\left(a + \frac{T'}{2}, b + \sum_{t \in \mathsf{obs}} (y_t - F_t \theta_t)^2\right)$$

where 'obs' is a vector of times when the data are observed and  $T^\prime \leq T$  is the length of obs.

e.g. matrix V

$$p(\Phi_V|\ldots) = W\left(a + \frac{T'}{2}, b + \sum_{t \in \mathsf{obs}} (y_t - F_t \theta_t) (y_t - F_t \theta_t)^\top\right).$$

## Partially missing when filtering

Suppose  $M_t$  is the matrix that is built by taking an identity matrix and removing the rows of any missing observations in  $y_t$ . Then  $\tilde{y}_t = M_t y_t$  contains only the observed data. The correct observation equation to consider is

$$\tilde{y}_t = \tilde{F}_t \theta_t + \tilde{v}_t \qquad \tilde{v}_t \sim N(0, \tilde{V}_t).$$

What are  $\tilde{F}_t$  and  $\tilde{V}_t$ ?

•  $\tilde{F}_t = M_t F_t$ •  $\tilde{V}_t = M_t V_t M_t^\top$ 

#### in DLMs

# Partially missing in MCMC

Let  $Y = (Y_{obs}, Y_{mis})$ . If we build an MCMC with only the observed data, then our scheme will look like

- Sample  $p(\theta|Y_{obs}, \psi)$  via FFBS
- Sample  $p(\psi|Y_{obs}, \theta)$ .

For example, consider the observation precision matrix  $\Phi_V$  as the only unknown parameter. What is it's full conditional distribution?

$$p(\Phi_V|Y_{\mathsf{obs}}, \theta) \propto p(Y_{\mathsf{obs}}|\Phi_V, \theta)p(\Phi_V)$$

Who knows?

# Partially missing in MCMC

Let  $Y = (Y_{obs}, Y_{mis})$ . Augment the MCMC to simulate the missing values, then our scheme will look like

- Sample  $p(\theta|Y, \psi)$  via FFBS
- Sample  $p(\psi|Y,\theta)$
- Sample  $p(Y_{mis}|Y_{obs}, \theta, \psi)$ .

This works since

$$p(\theta, \psi | Y_{\text{obs}}) = \int p(\theta, \psi, Y_{\text{mis}} | Y_{\text{obs}}) dY_{\text{mis}}.$$

## Partially missing in MCMC

How to simulate  $p(Y_{mis}|Y_{obs}, \theta, \psi)$ ?

First note,

$$p(Y_{\mathsf{mis}}|Y_{\mathsf{obs}}, \theta, \psi) = \prod_{t=1}^{T} p(Y_{\mathsf{mis},t}|Y_{\mathsf{obs},t}, \theta_t, \psi).$$

Second note,

$$\left(\begin{array}{c} Y_{\mathsf{mis},t} \\ Y_{\mathsf{obs},t} \end{array}\right) \sim N\left( \left[\begin{array}{c} F\theta_{\mathsf{mis},t} \\ F\theta_{\mathsf{obs},t} \end{array}\right], \left[\begin{array}{c} V_{\mathsf{mis}} & V_{\mathsf{m,o}} \\ V_{\mathsf{o},\mathsf{m}} & V_{\mathsf{obs}} \end{array}\right] \right).$$

### Goal

### With all fixed parameters known:

$$p(y_{t+k}, \theta_{t+k}|y_{1:t}) = \int p(y_{t+k}, \theta_{t+k}, \theta_{t+(k-1)}|y_{1:t}) d\theta_{t+(k-1)} \\ = \int p(y_{t+k}, \theta_{t+k}|\theta_{t+(k-1)}) p(\theta_{t+(k-1)}|y_{1:t}) d\theta_{t+(k-1)}$$

To get  $p(y_{t+k}, \theta_{t+k} | \theta_t)$  just use the Kalman filter with missing data from  $y_{t+1}$  up to  $y_{t+(k-1)}$ .

With unknown fixed parameters:

$$p(y_{t+k}, \theta_{t+k}|y_{1:t}) = \int p(y_{t+k}, \theta_{t+k}|\theta_{t+(k-1)}, \psi) p(\theta_{t+(k-1)}, \psi|y_{1:t}) d\theta_{t+(k-1)} d\psi.$$

Now we can't just use the Kalman filter due to the unknown fixed parameters. Instead, we need to integrate over their posteriors.

### MCMC Forecasting

After completing the MCMC, follow this procedure

- For each iteration  $j = 1, 2, \dots, J$  in the MCMC chain post burn-in:
  - Run a Kalman filter (dlmFilter) on your data using  $\psi^{(j)}$  to obtain  $p(\theta_t | y_{1:t}, \psi^{(j)}) = N(m_t^{(j)}, C_t^{(j)}).$
  - Forecast ahead (dlmForecast) to obtain  $p(y_{t+k}|y_{1:t}, \psi^{(j)}) = N(f_t(k)^{(j)}, Q_t(k)^{(j)})$  (see section 2.8 in Petris)
  - Calculate mean and 95% intervals for  $p(y_{t+k}|y_{1:t},\psi^{(j)})$ , i.e.  $f_t(k)^{(j)} (f_t(k)^{(j)} 1.96\sqrt{Q_t(k)^{(j)}}, f_t(k)^{(j)} + 1.96\sqrt{Q_t(k)^{(j)}})$  if Q is scalar, otherwise do this component-wise.

This provides a set of means and 95% intervals, one for each MCMC iteration j.

### MCMC Forecasting

To find the marginal mean and 95% interval, average these means and 95% intervals for all j, i.e.

$$E[y_{t+k}|y_{1:t}] \approx \frac{1}{J} \sum_{j=1}^{J} f_t(k)^{(j)}$$

$$Q_{2.5\%}[y_{t+k}|y_{1:t}] \approx \frac{1}{J} \sum_{j=1}^{J} f_t(k)^{(j)} - 1.96\sqrt{Q_t(k)^{(j)}}$$

$$Q_{97.5\%}[y_{t+k}|y_{1:t}] \approx \frac{1}{J} \sum_{j=1}^{J} f_t(k)^{(j)} + 1.96\sqrt{Q_t(k)^{(j)}}$$

If you have many MCMC iterations, you can use fewer iterations for this forecast by thinning the chain.

Jarad Niemi (STAT615@ISU)

Dynamic linear models