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Dynamic linear models Structure, notation, and terminology

Structure

Yt = Ftθt + vt vt ∼ Nm(0, Vt)
θt = Gtθt−1 + wt wt ∼ Np(0,Wt)
θ0 ∼ Np(m0, C0)

  

θt-1 θt θt+1

Yt-1 Yt Yt+1
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Dynamic linear models Local level model

Local level model

Yt = θt + vt vt ∼ N1(0, V )
θt = θt−1 + wt wt ∼ N1(0,W )
θ0 ∼ N1(m0, C0)

Signal-to-noise, r = W/V .
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Dynamic linear models Local level model

Local level model

Yt = θt + vt vt ∼ N(0, V )
θt = θt−1 + wt wt ∼ N(0,W )

p(θ0) = N(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Idea

Kalman filter idea

Goal: obtain p(θt|y1:t)

Recursive procedure:

Assume p(θt−1|y1:t−1) p(θt−1|y1:t−1) = N(mt−1, Ct−1)

Prior for θt

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
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Kalman filtering The hard way

Prior for θt

p(θt|y1:t−1) =

∫
N(θt;Gtθt−1,Wt)N(θt−1;mt−1, Ct−1)dθt−1

=

∫
1

(2π)p/2|Wt|1/2
exp

(
−

1

2
(θt −Gtθt−1)

>
W
−1
t (θt −Gtθt−1)

)
1

(2π)p/2|Ct−1|1/2
exp

(
−

1

2
(θt−1 −mt−1)

>
C
−1
t−1(θt−1 −mt−1)

)
dθt−1

= N(at, Rt)

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt

=

∫
N(yt;Ftθt, Vt)N(θt; at, Rt)dθt

=

∫
1

(2π)m/2|Vt|1/2
exp

(
−

1

2
(yt − Ftθt)

>
V
−1
t (yt − Ftθt)

)
1

(2π)p/2|Rt|1/2
exp

(
−

1

2
(θt − at)>R−1

t (θt − at)
)
dθt

= N(ft, Qt)

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
=
N(yt;Ftθt, Vt)N(θt; at, Rt)

N(yt; ft, Qt)

= N(mt, Ct)
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Kalman filtering Kalman filter

Latent state prior

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1). Find p(θt|y1:t−1).

Evolution equation: θt = Gtθt−1 + wt where wt ∼ Np(0,Wt).

CONAN =⇒ θt|y1:t−1 is normal

E[θt|y1:t−1] = Gtmt−1 = at

V ar[θt|y1:t−1] = GtCt−1G
>
t +Wt = Rt

p(θt|y1:t−1) = N(at, Rt).
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Kalman filtering Kalman filter

One-step ahead prediction

Prior is p(θt|y1:t−1) = N(at, Rt). Find p(yt|y1:t−1).

Observation equation: yt = Ftθt + vt where vt ∼ Nm(0, Vt).

CONAN =⇒ yt|y1:t−1 is normal

E[yt|y1:t−1] = Ftat = ft

V ar[yt|y1:t−1] = FtRtF
>
t + Vt = Qt

p(yt|y1:t−1) = N(ft, Qt).
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Kalman filtering Kalman filter

Latent state posterior - linear regression approach

We have p(θt|y1:t−1) = N(at, Rt). Find p(θt|y1:t).

Observation equation: yt = Ftθt + vt where vt ∼ Nm(0, Vt).

Linear regression =⇒ θt|y1:t is normal

V ar[θt|y1:t] = (R−1t + F>t V
−1
t Ft)

−1 = Ct

E[θt|y1:t] = Ct(R
−1
t at + F>t V

−1
t yt) = mt

p(θt|y1:t) = N(mt, Ct).
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Kalman filtering Kalman filter

Latent state posterior - multivariate normal approach

Prior is p(θt|y1:t−1) = N(at, Rt) and p(yt|y1:t−1) = N(ft, Qt). Find
p(θt|y1:t).

Consider

p

([
yt
θt

]∣∣∣∣ y1:t−1) = N

([
ft
at

]
,

[
Qt FtRt

RtF
>
t Rt

])

MVN theory =⇒ θt|y1:t−1, yt is normal

E[θt|y1:t] = at +RtF
>
t Q

−1
t (yt − ft) = mt

V ar[θt|y1:t] = Rt −RtF>t Q−1t FtRt = Ct

p(θt|y1:t) = N(mt, Ct).

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 10 / 224



Kalman filtering Kalman filter

Kalman filter

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
>
t +Wt.

Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
>
t + Vt.

Obtain posterior p(θt|y1:t) = N(mt, Ct) where

mt = at +Ktet and Ct = Rt −KtQtK
>
t

et = yt − ft and Kt = RtF
>
t Q

−1
t

Kt is the Kalman gain or adaptive coefficient.
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Kalman filtering Kalman filter example

Local level model

Yt = θt + vt vt ∼ N(0, V )
θt = θt−1 + wt wt ∼ N(0,W )

p(θ0) = N(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Kalman filter example

Local level model

Yt = θt + vt vt ∼ N(0, V )
θt = θt−1 + wt wt ∼ N(0,W )

p(θ0) = N(m0, C0)

Signal-to-noise, r = W/V .
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Kalman filtering Kalman filter example

Kalman gain (adaptive coefficient)

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Signal−to−noise:  0.1

●
●

●

●●

●
●
●
●●●

●●●

●

●

●●●
●

●

●

●●
●

●
●
●

●●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●●

●
●●

●
●

Signal−to−noise:  1

●●

●

●●

●
●●

●●●

●●
●

●

●

●●
●●

●

●

●

●●

●●●●●

●●

●

●●
●

●

●●

●●

●

●

●
●

●●●
●

●●

●●
●
●

●●
●

●

●

●

●
●
●●

●

●

●
●●

●●●
●
●
●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●
●

Signal−to−noise:  10

Kalman gain (adaptive coefficient)
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Kalman filtering Missing observations

Kalman filter

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
>
t +Wt.

Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
>
t + Vt.

Obtain posterior p(θt|y1:t) = N(mt, Ct) where

mt = at +Ktet and Ct = Rt −KtQtK
>
t

et = yt − ft and Kt = RtF
>
t Q

−1
t
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Kalman filtering Missing observations

Kalman filter with missing data

Assume p(θt−1|y1:t−1) = N(mt−1, Ct−1).

Obtain prior p(θt|y1:t−1) = N(at, Rt) where

at = Gtmt−1 and Rt = GtCt−1G
>
t +Wt.

Obtain one step ahead predictive p(yt|y1:t−1) = N(ft, Qt) where

ft = Ftat and Qt = FtRtF
>
t + Vt.

Obtain posterior p(θt|y1:t) = N(mt, Ct) where

If yt is not observed, mt = at and Ct = Rt.
If yt is observed,

mt = at +Ktet and Ct = Rt −KtQtK
>
t

et = yt − ft and Kt = RtF
>
t Q

−1
t
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Kalman filtering Forecasting

Forecasting

Forecasting is simply the Kalman filter with missing observations. So,(
θt+k
Yt+k

)
∼ N

([
at(k)
ft(k)

]
,

[
Rt(k) Ft+kRt(k)

Rt(k)F>t+k Qt(k)

])
where

at(k) = Gt+kat(k − 1)
Rt(k) = Gt+kRt(k − 1)G>t+k +Wt+k

ft(k) = Ft+kat(k)
Qt(k) = Ft+kRt(k)R>t+k + Vt

with at(0) = mt and Rt(0) = Ct.
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Kalman filtering Kalman Smoother

Kalman Smoother

Smoothing can be accomplished in a manner similar to the Kalman filter
via the Kalman smoother. If we have θt+1|y1:T ∼ N(st+1, St+1), then
θt|y1:T ∼ N(st, St) where

st = mt + CtG
>
t+1R

−1
t+1(st+1 − at+1)

St = Ct − CtG>t+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.
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Kalman filtering Backward sampling

Backward sampling

Recall

p(θt|y1:t) = N(mt, Ct) is available for all t from filtering and

p(θt|θt+1, y1:T ) = N(ht, HT ) with

Ht = (C−1t +G>t+1W
−1
t+1Gt+1)

−1

ht = Ht(C
−1
t mt +G>t+1W

−1
t+1θt+1)

The algorithm is then

Forward filter to obtain p(θt|y1:t) = N(mt, Ct) for all t.

Sample θT ∼ H(mT , CT ).

For t = T − 1, T − 2, . . . , 1, 0,

Calculate ht and Ht based on θt+1.
Draw θt ∼ N(ht, HT ).

This is then a joint draw of θ0:T ∼ p(θ0, . . . , θT |y1:T ).

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 19 / 224



Kalman filtering Backward sampling

Inference questions?

Any questions on performing inference on the latent states in a DLM?
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Model components

Decomposition of time series

Consider a univariate series Yt. Think of this series has being the sum of
independent components

Yt = Y1,t + · · ·+ Yh,t =

h∑
i=1

Yi,t

where each component has its own independent DLM (dynamic linear
model),

Yi,t = Fi,tθi,t + vi,t vi,t ∼ N(0, Vi,t)
θi,t = Gi,tθi,t−1 + wi,t wi,t ∼ N(0,Wi,t)

Then
Yt = Ftθt + vt vt ∼ N(0, Vt)
θt = Gtθt−1 + wt wt ∼ N(0,Wt)
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Model components

Observation equation

Recall
Yt = Y1,t + · · ·+ Yh,t

Yi,t = Fi,tθi,t + vi,t vi,t ∼ N(0, Vi,t)

Yt =
∑h

i=1 Yi,t
=
∑h

i=1

[
Fi,tθi,t + vi,t

]
=
∑h

i=1 Fi,tθi,t +
∑h

i=1 vi,t
=
∑h

i=1 Fi,tθi,t + vt vt ∼ N(0, Vt) Vt =
∑h

i=1 Vi,t
= Ftθt + vt

where

θt =

 θ1,t
...
θh,t

 Ft = [F1,t| · · · |Fh,t]
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Model components

Evolution equation

Recall

θt =

 θ1,t
...
θh,t

 =

 G1,tθ1,t−1 + w1,t
...

Gh,tθh,t−1 + wh,t

 =

 G1,tθ1,t−1
...

Gh,tθh,t−1

+

 w1,t
...

wh,t



=

 G1,tθ1,t−1
...

Gh,tθh,t−1

+ wt = Gtθt−1 + wt

where wt ∼ N(0,Wt) and

Wt =

 W1,t

. . .

Wh,t

 Gt =

 G1,t

. . .

Gh,t
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Model components

Combining model components

Consider
Yt = Ftθt + vt vt ∼ N(0, Vt)
θt = Gtθt−1 + wt wt ∼ N(0,Wt)

where Vt =
∑h

i=1 Vi,t,

θt =

 θ1,t
...
θh,t

 Ft = [F1,t| · · · |Fh,t]

and

Wt =

 W1,t

. . .

Wh,t

 Gt =

 G1,t

. . .

Gh,t
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Polynomial trend models Introduction

Polynomial trend model definition

A polynomial model of order n is a DLM with constant [and
specified] matrices Ft = F and Gt = G, and a forecast function
of the form

ft(k) = E(Yt+k|y1:t) = at,0 + at,1k + · · ·+ at,n−1k
n−1, k ≥ 0

where at,0, . . . , at,n−1 are linear functions of mt = E(θt|y1:t) and
are independent of k. Thus, the forecast function is a polynomial
or order n− 1 in k.

In practice we use,

Local level model (n = 1).

Linear trend model (n = 2).

Exponential trends are accommodated by taking logs and then using
a linear trend model.
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Polynomial trend models Local level model

Local level model

Yt = θt + vt vt ∼ N(0, V )
θt = θt−1 + wt wt ∼ N(0,W )

p(θ0) = N(m0, C0)

where Ft = F = 1, Gt = G = 1, Vt = V , and Wt = W .

What is the forecast function? ft(k) = E(Yt+k|y1:t) = mt.
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Polynomial trend models Local level model

Lake Superior data
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Polynomial trend models Local level model

Lake Superior data
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Polynomial trend models Local level model

Lake Superior data
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Polynomial trend models Linear trend model

Linear trend model

Yt = µt + vt vt ∼ N(0, V )
µt = µt−1 + βt−1 + wt,1 wt,1 ∼ N(0, σ2µ)

βt = βt−1 + wt,2 wt,2 ∼ N(0, σ2β)

p(θ0) = N(m0, C0)

Ft = F = (1, 0)

θt = (µt, βt)
>

Gt =

[
1 1
0 1

]

Forecast function ft(k) = E[Yt+k|y1:t] = µ̂t + kβ̂t
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Polynomial trend models Linear trend model

Lake Superior data
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Polynomial trend models Linear trend model

Polynomial trend models

Yt = Ftθt + vt vt ∼ Nm(0, Vt)
θt = Gtθt−1 + wt wt ∼ Np(0,Wt)

p(θ0) = N(m0, C0)

Ft = F = (1, 0, . . . , 0)

Gt = G =


1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

. . .
...

0 · · · 0 1 1
0 · · · 0 1


Wt = W = diag(W1, . . . ,Wn)
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Polynomial trend models Linear trend model

Specifying a local level model in R
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Seasonal models Example time series

Example seasonal time series

Air temperatures at Nottingham Castle
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Seasonal models Example time series

Regression - air temp on month

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.2900 0.5176 89.433 < 2e-16 ***

xAug 14.2300 0.7320 19.440 < 2e-16 ***

xDec -6.7600 0.7320 -9.235 < 2e-16 ***

xFeb -7.1000 0.7320 -9.700 < 2e-16 ***

xJan -6.5950 0.7320 -9.010 < 2e-16 ***

xJul 15.6100 0.7320 21.325 < 2e-16 ***

xJun 11.7500 0.7320 16.052 < 2e-16 ***

xMar -4.0950 0.7320 -5.594 6.32e-08 ***

xMay 6.2700 0.7320 8.566 1.62e-15 ***

xNov -3.7100 0.7320 -5.068 8.29e-07 ***

xOct 3.2050 0.7320 4.378 1.82e-05 ***

xSep 10.1900 0.7320 13.921 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.315 on 228 degrees of freedom

Multiple R-squared: 0.9304, Adjusted R-squared: 0.9271

F-statistic: 277.3 on 11 and 228 DF, p-value: < 2.2e-16
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Seasonal models Example time series

No intercept regression - air temp on month

Coefficients:

Estimate Std. Error t value Pr(>|t|)

xApr 46.2900 0.5176 89.43 <2e-16 ***

xAug 60.5200 0.5176 116.93 <2e-16 ***

xDec 39.5300 0.5176 76.37 <2e-16 ***

xFeb 39.1900 0.5176 75.72 <2e-16 ***

xJan 39.6950 0.5176 76.69 <2e-16 ***

xJul 61.9000 0.5176 119.59 <2e-16 ***

xJun 58.0400 0.5176 112.13 <2e-16 ***

xMar 42.1950 0.5176 81.52 <2e-16 ***

xMay 52.5600 0.5176 101.55 <2e-16 ***

xNov 42.5800 0.5176 82.27 <2e-16 ***

xOct 49.4950 0.5176 95.62 <2e-16 ***

xSep 56.4800 0.5176 109.12 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.315 on 228 degrees of freedom

Multiple R-squared: 0.9979, Adjusted R-squared: 0.9978

F-statistic: 9231 on 12 and 228 DF, p-value: < 2.2e-16
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Seasonal models Example time series

Time series decomposition

> plot(decompose(nottem))
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Seasonal models Example time series

Example seasonal time series

Air temperatures at Nottingham Castle
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Seasonal models Example time series

Zero-mean seasonal time series

Deviations from average air temperatures at Nottingham Castle
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Seasonal models Seasonal factor models

Seasonal factors

Suppose all s seasons have a factor αi. Then

Y1 = α1 + v1

Y2 = α2 + v2
...

Ys = αs + vs

Ys+1 = α1 + vs+1

Ys+2 = α2 + vs+2

...

Y2s = αs + v2s

Y2s+1 = α1 + v2s+1

Y2s+2 = α2 + v2s+2

...

Yt = Ftθt + vt

θt = Gtθt−1 + wt

where

θ1 = (α1, α2, . . . , αs)
>

Ft = F = (1, 0, 0, . . . , 0)

Gt = G =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0
... 0


Wt = W = 0 (maybe)
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Seasonal models Seasonal factor models

Rotating factors

If θ1 = (α1, α2, . . . , αs)
> and Wt = 0, what is θt?

θ2 = Gθ1 = (α2, α3, α4, . . . , αs, α1)
>

θ3 = Gθ2 = (α3, α4, . . . , αs, α1, α2)
>

...

θt = Gθt−1 = (αj , αj+1, . . . , αs, α1, . . . , αj−1)
>

where j = t mod s (j%%s in R).
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Seasonal models Seasonal factor models

Alternative DLM for seasonal factors

Suppose all s seasons have a factor αi. Then

Y1 = α1 + v1

Y2 = α2 + v2
...

Ys = αs + vs

Ys+1 = α1 + vs+1

Ys+2 = α2 + vs+2

...

Y2s = αs + v2s

Y2s+1 = α1 + v2s+1

Y2s+2 = α2 + v2s+2

...

Yt = Ftθt + vt

θt = Gtθt−1 + wt

where

θ1 = (α1, αs, αs−1, . . . , α2)>

Ft = F = (1, 0, 0, . . . , 0)

Gt = G =



0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

. . .
...

0 0 · · · 0 0

0 0
... 1 0


Wt = W = 0 (maybe)
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Seasonal models Seasonal factor models

Identifiability in seasonal factor models

Modeling mean separately

Looking at deviations from the mean

=⇒ parameter identifiability issue

Identifiability constraints:

Set αj = 0 for some j ∈ {1, 2, . . . , s}.
Sum-to-zero constraint, i.e.

∑s
i=1 αi = 0.
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Seasonal models Seasonal factor models

Parsimonious seasonal factor model

Yt = Ftθt + vt

θt = Gtθt−1 + wt

where

θ1 = (α1, αs, αs−1, . . . , α3)
>

Ft = F = (1, 0, . . . , 0)

Gt = G =



−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 · · · 0 0

0 0

.

.

. 1 0


Wt = W = 0 (maybe)

What is θ2 if W = 0?

θ2 = Gθ1 = (α2, α1, αs, αs−1, . . . , α4)
>

θ3 = Gθ2 = (α3, α2, α1, αs, αs−1, . . . , α5)
>

.

.

.

θt = Gθt−1

= (αj , αj−1, . . . , α1, αs, αs−1, . . . , αj+2)
>

where j = t mod s.
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Seasonal models Seasonal factor models

Seasonal factor model in R

##

## Call:

## lm(formula = y - mean(y) ~ x - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.890 -1.369 0.285 1.405 6.270

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## xJan -9.3446 0.5176 -18.054 < 2e-16 ***

## xFeb -9.8496 0.5176 -19.030 < 2e-16 ***

## xMar -6.8446 0.5176 -13.224 < 2e-16 ***

## xApr -2.7496 0.5176 -5.312 2.57e-07 ***

## xMay 3.5204 0.5176 6.802 9.00e-11 ***

## xJun 9.0004 0.5176 17.389 < 2e-16 ***

## xJul 12.8604 0.5176 24.847 < 2e-16 ***

## xAug 11.4804 0.5176 22.180 < 2e-16 ***

## xSep 7.4404 0.5176 14.375 < 2e-16 ***

## xOct 0.4554 0.5176 0.880 0.38

## xNov -6.4596 0.5176 -12.480 < 2e-16 ***

## xDec -9.5096 0.5176 -18.373 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 2.315 on 228 degrees of freedom

## Multiple R-squared: 0.9304, Adjusted R-squared: 0.9268

## F-statistic: 254.2 on 12 and 228 DF, p-value: < 2.2e-16
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Seasonal models Seasonal factor models

Seasonal factor model in R

library(dlm)

nottem.model = dlmModSeas(12,dV=2.315^2,dW=rep(0,11))

nottem.filter = dlmFilter(y-mean(y),nottem.model)

n = length(y) + 1 # Due to theta_0

data.frame(mean = c(-sum(nottem.filter$m[n,]), rev(nottem.filter$m[n,])),

lm_mean = m$coefficients)

## mean lm_mean

## xJan -9.3445833 -9.3445833

## xFeb -9.8495830 -9.8495833

## xMar -6.8445831 -6.8445833

## xApr -2.7495832 -2.7495833

## xMay 3.5204166 3.5204167

## xJun 9.0004164 9.0004167

## xJul 12.8604163 12.8604167

## xAug 11.4804164 11.4804167

## xSep 7.4404165 7.4404167

## xOct 0.4554167 0.4554167

## xNov -6.4595831 -6.4595833

## xDec -9.5095831 -9.5095833
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Fourier form seasonal models Basis

Canonical basis

Suppose all s seasons have a factor αi. Then, think of α as a linear
combination of basis vectors

α = (α1, . . . , αs) =

s∑
i=1

αiui

where ui is the s-dimensional vector having the ith component equal to
one and all other elements zero.

This representation lacks

Interpretation
Smoothness differentiation
Parsimony
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Fourier form seasonal models Basis

Fourier frequencies

Let

ωj = 2π
j

s
, j = 0, 1, . . . ,

s

2

where s is the length of the period.

Consider
e0 = (1, 1, . . . , 1)>

c1 = (cosω1, cos 2ω1, . . . cos sω1)>

s1 = (sinω1, sin 2ω1, . . . sin sω1)>

...
cj = (cosωj , cos 2ωj , . . . cos sωj)

>

sj = (sinωj , sin 2ωj , . . . sin sωj)
>

...
cs/2 = (cosωs/2, cos 2ωs/2, . . . cos sωs/2)

>

ss/2 is all zeros
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Fourier form seasonal models Basis

Plotting Fourier basis
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Fourier form seasonal models Basis

Fourier basis

Basis for Rs

α = a0e0 +

s/2−1∑
j=1

(ajcj + bjsj) + as/2cs/2.

Assume a0 = 0 since the mean will be modeled separately, e.g. through a
polynomial trend model. For j = 1, 2, . . . , s/2, the jth harmonic is

Sj(t) = aj cos(tωj) + bj sin(tωj)
= Aj cos(tωj + γj)

where bs/2 = 0, Aj =
√
a2j + b2j is the amplitude, and

γj = arctan(−bj/aj) is the phase.
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Fourier form seasonal models Building a DLM

Evolving a harmonic

For j = 1, 2, . . . , s/2, the jth harmonic is

Sj(t) = aj cos(tωj) + bj sin(tωj)

What is Sj(t+ 1)? It is

Sj(t+ 1) = aj cos([t+ 1]ωj) + bj sin([t+ 1]ωj).

For j < s/2, if we only know the value of Sj(t), i.e. we don’t know the
value of aj and bj individual, we cannot determine Sj(t+ 1). But we can
find that

Sj(t+ 1) = aj cos([t+ 1]ωj) + bj sin([t+ 1]ωj)
...

= (aj cos(tωj) + bj sin(tωj)) cos(ωj)+
+(−aj sin(tωj) + bj cos(tωj)) sin(ωj)

= Sj(t) cos(ωj) + S∗j (t) sin(ωj)

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 51 / 224



Fourier form seasonal models Building a DLM

Building a DLM - constructing G

For j = 1, 2, . . . , s/2, the jth harmonic is

Sj(t) = aj cos(tωj) + bj sin(tωj)

The conjugate harmonic is

S∗j (t) = −aj sin(tωj) + bj cos(tωj).

And the jth harmonic evolves in time according to[
Sj(t+ 1)
S∗j (t+ 1)

]
=

[
cosωj sinωj
− sinωj cosωj

] [
Sj(t)
S∗j (t)

]
and

Ss/2(t+ 1) = −Ss/2(t)
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Fourier form seasonal models Building a DLM

Period j DLMs

Consider DLMs containing only seasonality of frequency j < s/2.[
Sj(t+ 1)
S∗j (t+ 1)

]
=

[
cosωj sinωj
− sinωj cosωj

] [
Sj(t)
S∗j (t)

]
.

So this is a DLM with evolution matrix

Hj =

[
cosωj sinωj
− sinωj cosωj

]
,

state vector (Sj(t), S
∗
j (t))>, and observation matrix F = [1 0].

If j = s/2, we have

Ss/2(t+ 1) = cos((t+ 1)π) = − cos(tπ) = −Ss/2(t)

which is a DLM with state vector Ss/2(t), evolution matrix Hs/2 = [−1],
and observation matrix F = [1].
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Fourier form seasonal models Building a DLM

Fourier form seasonal DLM

Combine these period j DLMs using our combining rules:

θt = (S1(t), S
∗
1(t), . . . , S s

2
−1(t), S

∗
s
2
−1(t), S s

2
(t))>

with evolution matrix

G = blockdiag(H1, . . . ,H s
2
)

and observation matrix

F = [1 0 1 0 . . . 0 1]

and initial vector

θ0 = (a1, b1, . . . , a s
2
−1, b s

2
−1, a s

2
)>.

The seasonal process can be made more smooth by dropping higher
harmonics.
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Fourier form seasonal models Building a DLM

Nottingham data

d = ddply(data.frame(harmonics=1:6), .(harmonics), function(x) {
nottem.model = dlmModTrig(12,x$harmonics,dV=2.315^2,dW=rep(0,11))

nottem.filter = dlmFilter(y-mean(y),nottem.model)

forecast = dlmForecast(nottem.filter, 12)

data.frame(month = factor(months, levels=months),

effect = forecast$f)

})
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Fourier form seasonal models Building a DLM

Nottingham data

ggplot(subset(d, harmonics==6), aes(month, effect, group=1)) +

geom_line() +

theme_bw()
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Fourier form seasonal models Building a DLM

Plotting Harmonics for Nottingham data
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Fourier form seasonal models Building a DLM

Nottingham data - fewer harmonics

d$harmonics_f = factor(d$harmonics)

ggplot(d, aes(month, effect, color=harmonics_f, shape=harmonics_f, group=harmonics_f)) +

geom_point() +

geom_line() +

theme_bw()
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Fourier form seasonal models General periodic components

Sunspots

The previous development works for even period s and odd period s with
the slight change that j = 0, . . . , (s− 1)/2. A similar development can be
constructed for periodic observations with a non-integer period. In this
example, the period for sunspots was estimated to be 130.51 months. This
quantity and the variances were estimated via MLEs.

mod <- dlmModTrig(q = 2, tau = 130.51, dV = 0,

dW = rep(c(1765e-2, 3102e-4), each = 2)) +

dlmModPoly(1, dV = 0.7452, dW = 0.1606)

sspots <- sqrt(sunspots)

sspots.smooth <- dlmSmooth(sspots, mod)

y <- cbind(sspots,

tcrossprod(dropFirst(sspots.smooth$s[, c(1, 3, 5)]),

matrix(c(0, 0, 1, 1, 1, 0), nr = 2,

byrow = TRUE)))

colnames(y) <- c("Sunspots", "Level", "Periodic")
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Fourier form seasonal models General periodic components

Sunspots

plot(y, yax.flip = TRUE, oma.multi = c(2, 0, 1, 0))
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ARMA models ARMA model definition

ARMA(p,q) [Box-Jenkins models]

Assuming µ = 0, the autoregressive moving average model is :

Yt =

p∑
j=1

φjYt−j +

q∑
j=1

ψjεt−j + εt

Yt =

r∑
j=1

φjYt−j +

r−1∑
j=1

ψjεt−j + εt

where r = max{p, q + 1} with φj = 0 for j > p and ψj = 0 for j > q and

εt
ind∼ N(0, σ2).
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ARMA models DLM representation of an ARMA model

DLM representation of ARMA model

Then an ARMA(p,q) is a DLM with

Yt = Fθt

θt = Gθt−1 +Rεt

with V = 0

W = RR>σ2

θt = (θ1,t, . . . , θr,t)
>

F = (1, 0, . . . , 0)

G =


φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
. . .

...
φr−1 0 · · · 0 1
φr 0 · · · 0 0


R = (1, ψ1, . . . , ψr−2, ψr−1)

>
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ARMA models DLM representation of an ARMA model

Verification of DLM representation of an ARMA model

Yt = θ1,t

θ1,t = φ1θ1,t−1 + θ2,t−1 + εt

θ2,t = φ2θ1,t−1 + θ3,t−1 + ψ1εt
...

θr−1,t = φr−1θ1,t−1 + θr,t−1 + ψr−2εt

θr,t = φrθ1,t−1 + ψr−1εt
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ARMA models DLM representation of an ARMA model

Verification of DLM representation of an ARMA model

Yt = θ1,t

θ1,t = φ1θ1,t−1 + θ2,t−1 + εt

θ2,t−1 = φ2θ1,t−2 + θ3,t−2 + ψ1εt−1
...

θr−1,t−(r−2) = φr−1θ1,t−(r−1) + θr,t−(r−1) + ψr−2εt−(r−2)

θr,t−(r−1) = φrθ1,t−r + ψr−1εt−(r−1)

=⇒
θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + θ3,t−2 + ψ1εt−1 + εt

=⇒
θ1,t = φ1θ1,t−1 + · · ·+ φrθ1,t−r + ψ1εt−1 + · · ·+ ψr−1εt−(r−1) + εt

Yt = φ1Yt−1 + · · ·+ φrYt−r + ψ1εt−1 + · · ·+ ψr−1εt−(r−1) + εt

Yt =

r∑
j=1

φjY1,t−j +

r−1∑
j=1

ψjεt−j + εt
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ARMA models ARIMA models

ARIMA(p,d,q)

An ARIMA(p,d,q) can be fit by taking the dth order difference of the
data and then applying an ARMA(p,q) model.

Clearly we can do the previous with the DLM representation.

Alternatively, ARIMA models have a direct DLM representation (see
section 3.2.5 in Petris)

ARIMA models are typically used for non-stationary time series.

In the DLM framework, modeling non-stationarity through a
polynomial trend or seasonal model is more common than using the
ARIMA framework.
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ARMA models Output gap example

Log US GDP
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ARMA models Output gap example

A model for Log US GDP

Yt = Y
(p)
t + Y

(g)
t

Y
(p)
t = F (p)θ

(p)
t

θ
(p)
t = G(p)θ

(p)
t−1 + w

(p)
t

θ
(p)
t = (Y

(p)
t , δt)

>

F (p) = (1, 0)>

G(p) =

[
1 1
0 1

]
W (p) = diag(σ2ε , σ

2
z)

Y
(g)
t = F (g)θ

(g)
t

θ
(g)
t = G(g)θ

(g)
t−1 + w

(g)
t

θ
(g)
t = (Y

(g)
t , θ

(g)
t,2 )>

F (g) = (1, 0)>

G(g) =

[
φ1 1
φ2 0

]
W (g) = diag(σ2u, 0)
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ARMA models Output gap example

A model for Log US GDP

Yt = Fθt + vt

θt = Gθt−1 + wt

θt = (Y
(p)
t , δt, Y

(g)
t , θ

(g)
t,2 )>

F = (1, 0, 1, 0)

G =


1 1 0 0
0 1 0 0
0 0 φ1 1
0 0 φ2 0


V = 0

W = diag(σ2ε , σ
2
z , σ

2
u, 0)
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ARMA models Output gap example

MLE parameter estimates in Log US GDP model

> level0 <- Lgdp[1]

> slope0 <- mean(diff(Lgdp))

> buildGap <- function(u) {

trend <- dlmModPoly(dV = 1e-7, dW = exp(u[1:2]),

m0 = c(level0, slope0), C0 = 2 * diag(2))

gap <- dlmModARMA(ar = u[4:5], sigma2 = exp(u[3]))

return(trend + gap)}

> init <- c(-3, -1, -3, .4, .4)

> outMLE <- dlmMLE(Lgdp, init, buildGap)

> dlmGap <- buildGap(outMLE$par)

> sqrt(diag(W(dlmGap))[1:3])

[1] 0.0057817835 0.0000763763 0.0061453639

> GG(dlmGap)[3:4, 3]

[1] 1.4806256 -0.5468107
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ARMA models Output gap example

MLE parameter estimates in Log US GDP model

gdpSmooth <- dlmSmooth(Lgdp, dlmGap)
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DLM Regression models DLM Regression models

Standard regression model

Consider a temporal regression problem with yt ∈ R and xt ∈ Rp. A
standard regression model assumes

yt = x>t θ + εt, εt
ind∼ N(0, σ2).

But, if the effect of xt on yt changes with t, we may want to consider the
model

yt = x>t θt + εt, εt
ind∼ N(0, σ2).

And put some kind of evolution on θt, e.g.

θt = Gtθt−1 + ωt, ωt
ind∼ Np(0,Wt).

Outstanding problem: How can we differentiate dynamic coefficients from
autocorrelated errors?
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DLM Regression models DLM Regression models

Dynamic regression model

This dynamic regression model written as a DLM is

Yt = Ftθt + vt vt
ind∼ N(0, σ2t )

θt = Gtθt−1 + wt wt
ind∼ Np(0,Wt)

where

Ft = x>t ,

(typically) Gt = Ip, and

(typically) Wt is diagonal.
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DLM Regression models Capital asset pricing model

Background

Use the following notation:
rt : return at time t of the asset under study

r
(M)
t : return at time t of the market

r
(f)
t : return at time t of a risk free asset

Let
yt = rt − r(f)t

xt = r
(M)
t − r(f)t

A univariate capital asset pricing model (CAPM) assumes that

yt = α+ βxt + vt, vt
ind∼ N(0, σ2).
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DLM Regression models Capital asset pricing model
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DLM Regression models Capital asset pricing model

Static regression of IBM returns

> outLM <- lm(IBM ~ x)

> outLM$coef

(Intercept) x

-0.0004895937 0.4568207721

>

> mod <- dlmModReg(x, dV = 0.00254, m0 = c(0, 0),

+ C0 = diag(c(1e+07, 1e+07)))

> outF <- dlmFilter(IBM, mod)

> outF$m[1 + length(IBM), ]

[1] -0.0004895937 0.4568207719

Since the estimate for β < 1 the stock would be considered conservative.
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DLM Regression models Capital asset pricing model

Dynamic regression of IBM returns

> buildCapm <- function(u) {

+ dlmModReg(x, dV = exp(u[1]), dW = exp(u[2 : 3]))

+ }

> outMLE <- dlmMLE(IBM, parm = rep(0, 3), buildCapm)

> exp(outMLE$par)

[1] 2.328402e-03 1.100214e-05 6.495784e-04

> outMLE$value

[1] -276.7014

> mod <- buildCapm(outMLE$par)

> outS <- dlmSmooth(IBM, mod)

> plot(as.zoo(dropFirst(outS$s)), main = "",

mar = c(0, 2.1, 0, 1.1),

oma = c(2.1,0,.1,.1), cex.axis = 0.5)
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DLM Regression models Capital asset pricing model

CAPM example
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DLMs for longitudinal data Longitudinal data

Longitudinal data

Suppose at each time point, you have observations from multiple units,
e.g. people, countries, stocks, etc. The data can be represented as a
matrix.

Time
Item 1 2 · · · T

1 Y1,1 Y1,2 · · · Y1,T
2 Y2,1 Y2,2 · · · Y2,T
...

...
m Ym,1 Ym,2 · · · Ym,T
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DLMs for longitudinal data Individual univariate DLMs

Individual univariate DLMs

Suppose for each unit i = 1, . . . ,m, we can write down a univariate DLM:

Yi,t = Fθ
(i)
t + vi,t, vi,t ∼ N(0, Vi)

θ
(i)
t = Gθ

(i)
t−1 + w

(i)
t , w

(i)
t ∼ Np(0,Wi)

F and G are constant for all i and t

Vi and Wi are constant for all t

θ
(i)
t are still vectors, thus the notation

Is there a relationship between Vi and Vj or Wi and Wj for i 6= j?

How about Cov(vi,t, vj,t) or Cov(w
(i)
t , w

(j)
t ) for i 6= j?
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Seemingly unrelated time series An m = 2 example

Linear trend models

Suppose you have a linear trend model for each unit i:

Yi,t = Fi,tθ
(i)
t + vi,t vi,t ∼ Nm(0, Vi,t)

θi,t = Gi,tθ
(i)
t−1 + w

(i)
t w

(i)
t ∼ Np(0,Wi,t)

What is Fi,t? Fi,t = (1, 0)>

What is Gi,t?

Gi,t =

[
1 1
0 1

]

What is Vi,t? Vi,t = Vi

What is Wi,t? Wi,t = Wi

What is θ
(i)
t ? θ

(i)
t = (µi,t, βi,t)
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Seemingly unrelated time series An m = 2 example

Linear trend models

Combine these into a DLM with m = 2:

Yt = Ftθt + vt vt ∼ Nm(0, Vt)
θt = Gtθt−1 + wt wt ∼ Np(0,Wt)

θt = (µ1,t, µ2,t, β1,t, β2,t)

What is Ft?

Ft =

[
1 0 0 0
0 1 0 0

]

What is Gt?

Gt =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



What is Vt?

Vt = V =

[
V1 ?
? V2

]

What is Wt?

Wt = W =

[
Wµ 0
0 Wβ

]

What are Wµ and Wβ? If diagonal?
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Seemingly unrelated time series In general

Kronecker products

Given two matrices A and B, the Kronecker product A⊗B is defined as a1,1B · · · a1,nB
...

...
...

am,1B · · · am,nB



If A is 2x2, what is A⊗ I2?
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Seemingly unrelated time series In general

SUTSE model

Yt = (F ⊗ Im)θt + vt vt ∼ Nm(0, V )
θt = (G⊗ Im)θt−1 + wt wt ∼ Np(0,W )

where

The covariance matrices V and W are typically somewhat sparse. Often

off-diagonal elements of V are zero

off-diagonal elements of W are zero

some diagonal elements of W are zero
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Seemingly unrelated time series SUTSE example

The data
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Seemingly unrelated time series SUTSE example

Model setup

> mod <- dlmModPoly(2)

> mod$FF <- mod$FF %x% diag(2)

> mod$GG <- mod$GG %x% diag(2)

>

> W1 <- matrix(0, 2, 2)

> W2 <- diag(c(49, 437266))

> W2[1, 2] <- W2[2, 1] <- 155

> mod$W <- bdiag(W1, W2)

>

> V <- diag(c(72, 14353))

> Var[1, 2] <- Var[2, 1] <- 1018

> mod$V <- V

>

> mod$m0 <- rep(0, 4)

> mod$C0 <- diag(4) * 1e7

> mod <- as.dlm(mod)
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Seemingly unrelated time series SUTSE example

Filtering and one-step ahead prediction errors

> investFilt <- dlmFilter(invest, mod)

>

> sdev <- residuals(investFilt)$sd

> lwr <- investFilt$f + qnorm(0.025) * sdev

> upr <- investFilt$f - qnorm(0.025) * sdev
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Seemingly unrelated time series SUTSE example

The data
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Seemingly unrelated regressions model Individual univariate dynamic regressions

Individual univariate dynamic regressions

Suppose for each unit i, we have a univariate dynamic regression model:

Yi,t = F
(i)
t θ

(i)
t + vi,t, vi,t ∼ N(0, Vi)

θ
(i)
t = Gi,tθ

(i)
t−1 + w

(i)
t , w

(i)
t ∼ Np(0,Wi)

What is F
(i)
t ? F

(i)
t = (x1,t, . . . , xp,t) if covariates are common to all

series, as they will be in the example to follow

What is Gi,t? Gi,t = Ip

What is Vi,t? Vi,t = Vi

What is Wi,t? Wi,t = Ip

What is θ
(i)
t ? θ

(i)
t = (β

(i)
1,t, . . . , β

(i)
p,t)
>
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Seemingly unrelated regressions model Model

Simple multivariate dynamic regression

yt = (Ft ⊗ Im)θt + vt vt
ind∼ N(0, V )

θt = (G⊗ Im)θt−1 + wt wt
ind∼ N(0,W )

where

yt =

 y1,t
...

ym,t

 , θt =



α1,t
...

αm,t
β1,t

...
βm,t


, vt =

 v1,t
...

vm,t

 , wt =



w1,t
...

wm,t
wm+1,t

...
w2m,t


with Ft = (1, xt)

>, G = I2, and W = blockdiag(Wα,Wβ).
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Seemingly unrelated regressions model An example

Data
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Seemingly unrelated regressions model An example

Model setup

> CAPM <- dlmModReg(market)

> CAPM$FF <- CAPM$FF %x% diag(m)

> CAPM$GG <- CAPM$GG %x% diag(m)

> CAPM$JFF <- CAPM$JFF %x% diag(m)

> CAPM$W <- CAPM$W %x% matrix(0, m, m)

> CAPM$W[-(1 : m), -(1 : m)] <-

+ c(8.153e-07, -3.172e-05, -4.267e-05, -6.649e-05,

+ -3.172e-05, 0.001377, 0.001852, 0.002884,

+ -4.267e-05, 0.001852, 0.002498, 0.003884,

+ -6.649e-05, 0.002884, 0.003884, 0.006057)

> CAPM$V <- CAPM$V %x% matrix(0, m, m)

> CAPM$Var[] <- c(41.06, 0.01571, -0.9504, -2.328,

+ 0.01571, 24.23, 5.783, 3.376,

+ -0.9504, 5.783, 39.2, 8.145,

+ -2.328, 3.376, 8.145, 39.29)

> CAPM$m0 <- rep(0, 2 * m)

> CAPM$C0 <- diag(1e7, nr = 2 * m)
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Seemingly unrelated regressions model An example

Smoothing inference

> CAPMsmooth <- dlmSmooth(y, CAPM)
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Seemingly unrelated regressions model An example

Smoothed estimates
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More DLMs for longitudinal data

Longitudinal data

Suppose at each time point, you have observations from multiple units,
e.g. people, countries, stocks, etc. The data can be represented as a
matrix.

Time
Item 1 2 · · · T

1 Y1,1 Y1,2 · · · Y1,T
2 Y2,1 Y2,2 · · · Y2,T
...

...
m Ym,1 Ym,2 · · · Ym,T
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More DLMs for longitudinal data Hierarchical DLMs

Individual DLMs

Yi,t = Fi,tθi,t + vi,t, vi,t ∼ N(0, σ2i,t)

SUTSE: Necessary to estimate blocks of m×m matrices in the covariance
matrix W . Instead:

θi,t = λt + εi,t, εi,t ∼ Nk(0,Σt)
λt = Gλt−1 + wt, wt ∼ Nk(0,Wt)

Hierarchical DLM:

Yt = Fy,tθt + vt, vt ∼ Nm(0, Vy,t)
θt = Fθ,tλt + εt, εt ∼ NP (0, Vθ,t)
λt = Gtλt−1 + wt, wt ∼ Nk(0,Wt)
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More DLMs for longitudinal data Hierarchical DLMs

Hierarchical DLMs

Hierarchical DLM:

Yt = Fy,tθt + vt, vt ∼ Nm(0, Vy,t)
θt = Fθ,tλt + εt, εt ∼ NP (0, Vθ,t)
λt = Gtλt−1 + wt, wt ∼ Nk(0,Wt)

where
θt = (θ>1,t, . . . , θ

>
m,t)

>

Fy,t = blockdiag(Fi,t)
Fθ,t = [Ip| · · · |Ip]>
Vy,t = diag(σ2i,t)

Vθ,t = blockdiag(Σt)
Gt = G
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More DLMs for longitudinal data Hierarchical DLMs

Integrating out θt

Let’s write this as a standard DLM

Yt = Fy,tFθ,tλt + v∗t , v∗t ∼ Nm(0, Fy,tVθ,tF
>
y,t + Vy,t)

λt = Gtλt−1 + wt, wt ∼ Nk(0,Wt)
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More DLMs for longitudinal data Dynamic nonparametric regression

Longitudinal data with common covariates

Suppose at each time point, you have observations from multiple units,
e.g. people, countries, stocks, etc., with a common covariate. The data
can be represented as a matrix.

Time
Item 1 2 · · · T Covariate

1 Y1,1 Y1,2 · · · Y1,T x1
2 Y2,1 Y2,2 · · · Y2,T x2
...

...
m Ym,1 Ym,2 · · · Ym,T xm
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More DLMs for longitudinal data Non-parametric regression

Let’s allow flexibility in how Y relates to x:

E(Yt|x) =

k∑
j=1

βj,thj(x)

where hj(x) may be, e.g.

powers : hj(x) = xj

trig functions : hj(x) = aj sin(bjx)
cubic splines : hj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

Then

Yi,t =

k∑
j=1

βj,thj(xi) + εi,t, εi,t ∼ N(0, σ2).

In matrix notation,

Yt = Fβt + εt, εt ∼ Nm(0, V ).

What are F and V ?
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More DLMs for longitudinal data Dynamic nonparametric regression

Dynamic nonparametric regression

Yt = Fθt + εt, εt ∼ Nm(0, V )
θt = Gθt−1 + wt, wt ∼ Np(0,Wt)

where
θt = βt

F =

 h1(x1) · · · hp(x1)
...

...
h1(xm) · · · hp(xm)


V = σ2Im
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More DLMs for longitudinal data Dynamic factor models

Dynamic factor model

Yt = Aµt + vt, vt ∼ Nm(0, V )
µt = µt−1 + wt, wt ∼ Np(0,W )

where A is a fixed m× p matrix of factor loadings with p < m.

Identifiability of A. Suppose H is a p× p invertible matrix. Then

Yt = Ãµ̃t + vt, vt ∼ Nm(0, V )
µ̃t = µ̃t−1 + w̃t, w̃t ∼ Np(0, HWH>)

with µ̃t = Hµt and Ã = AH−1.

How many parameters in A? mp

How many parameters in W? 1
2p(p+ 1)

Number of free parameters is mp− 1
2p(p− 1).
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More DLMs for longitudinal data Dynamic factor models

Identifiable dynamic factor models

One method of enforcing identifiability is

Let W = Ip,

Let A =

[
L
B

]
where L is a lower triangular matrix and B can be

anything.

Total parameters are mp− 1
2p(p− 1).

Another method is

Let W be diagonal

Let Ai,i = 1 and Ai,j = 0 for j > i.
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Unknown parameters in DLMs Polynomial trend models

Unknown parameters in polynomial trend models

What is known?

Ft = (1, 0, . . . , 0)

Gt = G =


1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

. . .
...

0 · · · 0 1 1
0 · · · 0 1


What are the unknown parameters?

θt

Vt
?
= V

Wt
?
= W
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Unknown parameters in DLMs Seasonal models

Unknown parameters in seasonal models

What is known?

Ft
Seasonal factor: Ft = (1, 0, . . . , 0)
Fourier form: Ft = (1, 0, 1, 0, . . . , 1, 0)

Gt = G
Seasonal factor: rotation matrix
Fourier form: block diagonal with blocks Hj

Hj =

[
cosωj sinωj
− sinωj cosωj

]

What are the unknown parameters?

θt

Vt
?
= V

Wt
?
= W

?
= 0
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Unknown parameters in DLMs Dynamic regression models

Unknown parameters in dynamic regression models

What is known?

Ft = xt

Gt
?
= G

?
= I

What are the unknown parameters?

θt

Vt
?
= V

?
= σ2I or σ2D

Wt
?
= W

?
= D
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Unknown parameters in DLMs Bottom line

The bottom line is...

In all of these univariate models,

the unknowns are θt, Wt, and Vt,
θt has always been unknown
and often, Wt = W and Vt = V .

In our multivariate models,

commonly Wt = W and Vt = V , but now they are (block-diagonal)
matrices.
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Maximum likelihood estimation General MLE approach

For a parameter vector ψ and data vector y, the likelihood function

L(ψ) ∝ p(y|ψ).

The maximum likelihood estimate is

ψ̂ = argmaxψL(ψ).

Which is equivalent to
ψ̂ = argmaxψ`(ψ)

where `(ψ) = logL(ψ).
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Maximum likelihood estimation DLM likelihood function

Likelihood function for DLMs

If ψ = (W,V ), what is L(ψ) for a general DLM?

What do we know?

p(yt|θt, V ) = N(yt;Ftθt, V )

p(θt|θt−1,W ) = N(θt;Gtθt−1,W )

p(θ0) = N(m0, C0)

p(θt|y1:t−1, ψ) = N(at, Rt)

p(yt|y1:t−1, ψ) = N(ft, Qt)

p(y|ψ) =

n∏
t=1

p(yt|y1:t−1, ψ)
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Maximum likelihood estimation MLEs in DLMs

Finding MLEs for DLMs

If yt is multivariate, the likelihood function is

L(ψ) ∝
n∏
t=1

1

(2π)k/2|Qt|1/2
exp

(
−1

2
(yt − ft)>Q−1t (yt − ft)

)
.

Log-likelihood function

`(ψ) = C +−1

2

n∑
t=1

log |Qt| −
1

2

n∑
t=1

(yt − ft)>Q−1t (yt − ft).

The MLE is then
ψ̂ = argmaxψ`(ψ)

The R function dlmMLE does all of this for you.
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Conjugate Bayesian inference Review

Bayesian inference

What do we have to specify to perform Bayesian inference, i.e. parameter
estimation, for data y?

A statistical model p(y|ψ)

A prior p(ψ)

What is the objective of Bayesian inference?

The posterior p(ψ|y) ∝ p(y|ψ)p(ψ).
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Conjugate Bayesian inference Review

Conjugacy

Conjugate Bayesian inference is one where if

ψ ∼ f(α) =⇒ ψ|y ∼ f(α′).

Remember the examples

y ∼ N(µ, I), µ ∼ N(·, ·) =⇒ µ|y ∼ N(·, ·)
y ∼ N(0, φ−1I), φ ∼ Ga(·, ·) =⇒ φ|y ∼ Ga(·, ·)
y ∼ N(µ, φ−1I), µ, φ ∼ NG(·) =⇒ µ, φ|y ∼ NG(·)
y ∼ N(Xβ, φ−1I), β, φ ∼ NG(·) =⇒ β, φ|y ∼ NG(·)
y ∼ Bin(n, p), p ∼ Be(·, ·) =⇒ p|y ∼ Be(·, ·)
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Conjugate Bayesian inference Conjugate Bayesian inference in DLMs

What are the unknowns in DLMs?

So for ψ = (F1:n, G1:n,W1:n, V1:n), we are looking for

ψ ∼ f(α) =⇒ ψ|y ∼ f(α′).

This only happens in simple examples. Today, we will discuss

Vt = φ−1Ṽt,Wt = φ−1W̃t, C0 = φ−1C̃0

Wt specified by a discount factor

Evolving φ = 1/σ2
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Conjugate Bayesian inference common φ−1

common φ−1

Yt = Ftθt + vt vt ∼ Nm(0, φ−1Ṽt)

θt = Gtθt−1 + wt wt ∼ Np(0, φ
−1W̃t)

p(θ0) = N(m0, φ
−1C̃0)

φ ∼ Ga(α0, β0)

Everything is known except

θt for all t

φ
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Conjugate Bayesian inference common φ−1

Starting with
θt−1, φ|y1:t−1 ∼ NG(mt−1, C̃t−1, αt−1, βt−1)

One step ahead prior

θt, φ|y1:t−1 ∼ NG(at, R̃t, αt−1, βt−1)

where at = Gtmt−1 and R̃t = GtC̃t−1G
>
t + W̃t.

One step ahead predictive density

Yt|y1:t−1 ∼ t2αt−1(ft, Q̃tβt−1/αt−1)

with ft = Ftat and Q̃t = FtR̃tF
>
t + Ṽt.

Filtering density
θt, φ|y1:t ∼ NG(mt, C̃t, αt, βt)

with

mt = at + R̃tFtQ̃
−1
t (yt − ft)

C̃t = R̃t − R̃tF>t Q̃−1
t R̃>t

αt = αt−1 +
m

2

βt = βt−1 +
1

2
(yt − ft)>Q̃−1

t (yt − ft)
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Conjugate Bayesian inference Wt specified by discount factor

Discount factor

Let’s specify how adaptive we want our model to be.

Do this by specifying Wt relative to Vt and Ct using a discount factor
δ ∈ (0, 1].

δ = 1 means no loss of information, i.e. Wt = 0

δ = 0 means no information retained

Often δ > 0.9

To implement, set

Wt =
1− δ
δ

G>t Ct−1Gt

or

W̃t =
1− δ
δ

G>t C̃t−1Gt

if using a common σ2.
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Conjugate Bayesian inference Wt specified by discount factor

Discount factor effect

DF= 1

Time

1960 1965 1970 1975 1980 1985

20
25
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35

40
45

DF= 0.9

Time
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45

DF= 0.3
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Conjugate Bayesian inference Wt specified by discount factor

Choosing the discount factor

Specify δ based on one-step ahead prediction errors.

DF MAPE MAD MSE sigma2

1.0 0.10 3.02 21.54 12.00

0.9 0.09 2.86 19.92 9.64

0.8 0.10 2.87 20.29 8.94

0.3 0.11 3.42 25.12 5.07

Last column is posterior expectation for σ2, i.e. E[σ2|y1:187].
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Conjugate Bayesian inference Wt specified by discount factor

Inference for δ = 0.95 on Lake Superior Data
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Conjugate Bayesian inference Evolving φt

Evolving φt

Choose δ∗ ∈ (0, 1)

φt−1|y1:t−1 ∼ Ga(αt−1, βt−1)

φt|y1:t−1 ∼ Ga(δ∗αt−1, δ
∗βt−1)

What is

E[φt|y1:t−1] = E[φt−1|y1:t−1]
V ar[φt|y1:t−1] = 1

δ∗V ar[φt−1|y1:t−1]
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Conjugate Bayesian inference Evolving φt

Evolving φt for Lake Superior data
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Conjugate Bayesian inference Bottom line

The situations for conjugate Bayesian analysis are small, therefore we need
more advanced techniques.
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Review Gibbs sampling

Gibbs sampling algorithm

Start with an initial guess for all parameters and call it ψ(0). Set j = 1.

1. Sample ψ
(j)
1 ∼ p

(
ψ1|ψ(j−1)

2 , . . . , ψ
(j−1)
K , y

)
2. Sample ψ

(j)
2 ∼ p

(
ψ2|ψ(j)

1 , ψ
(j−1)
3 , . . . , ψ

(j−1)
K , y

)
3.

...

4. Sample ψ
(j)
k ∼ p

(
ψk|ψ

(j)
1 , . . . , ψ

(j)
k−1, ψ

(j−1)
k+1 , . . . , ψ

(j−1)
K , y

)
5.

...

6. Sample ψ
(j)
K−1 ∼ p

(
ψK−1|ψ(j)

1 , . . . , ψ
(j)
K−2, ψ

(j−1)
K , y

)
7. Sample ψ

(j)
K ∼ p

(
ψK |ψ(j)

1 , . . . , ψ
(j)
K−1, y

)
8. If j < J , j = j + 1 and return to step 1.
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Univariate Gibbs sampling for states in DLMs

What full conditionals are required?

Suppose our goal is to draw from p(θ0:T |y1:T ) using univariate Gibbs
sampling. We will implicitly assume conditioning on any other unknown
parameters.

What are the required full condition distributions?

p(θ0|θ1:T , y1:T )
p(θt|θ−t, y1:T ) where θ−t is θ0:T with the tth element removed
p(θT |θ0:T−1, y1:T )
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Univariate Gibbs sampling for states in DLMs

DLMs

Yt = Ftθt + vt vt ∼ Nm(0, Vt)
θt = Gtθt−1 + wt wt ∼ Np(0,Wt)

p(θ0) = N(m0, C0)

  

θt-1 θt θt+1

Yt-1 Yt Yt+1
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Univariate Gibbs sampling for states in DLMs

What are the full conditionals?

p(θ0| . . .) = p(θ0|θ1)
∝ N(θ1;G1θ0,W1)N(θ0;m0, C0)

∝ N(θ0; k0,K0)

K0 = (C−1
0 +G>1 W

−1
1 G1)

−1

k0 = K0(C
−1
0 m0 +G>1 W

−1
1 θ1)

p(θT | . . .) = p(θT |θT−1, yT )

∝ N(yT ;FT θT , VT )N(θT ;GT θT−1,WT )

∝ N(θT ; kT ,KT )

KT = (W−1
T + F>T V

−1
T FT )

−1

kT = KT (W
−1
T GT θT−1 + F>T V

−1
T yT )

p(θt| . . .) = p(θt|θt−1, θt+1, yt)

∝ N(yt;Ftθt, Vt)N(θt+1;Gt+1θt,Wt)N(θt;Gtθt−1,Wt+1)

∝ N(θt; kt,Kt)

Kt = (W−1
t + F>t V

−1
t Ft +G>t+1W

−1
t+1Gt+1)

−1

kt = Kt(W
−1
t Gtθt−1 + F>t V

−1
t yt +G>t+1W

−1
t+1θt+1)
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Univariate Gibbs sampling Local level model example

Consider the local level model with V = 1 and W = 0.012.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

0 20 40 60 80 100

−
2

−
1

0
1

2

t

y

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 126 / 224



Univariate Gibbs sampling Local level model example

Univariate Gibbs sampling for states
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Univariate Gibbs sampling Local level model example

Exact quantiles for states
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Univariate Gibbs sampling Local level model example

True underlying state
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Smoothing In state-space models

Filtering
Goal: p(θt|y1:t) where y1:t = (y1, y2, . . . , yt) (filtered distribution)

Recursive procedure:

Assume p(θt−1|y1:t−1)

Prior for θt

p(θt|y1:t−1) =

∫
p(θt, θt−1|y1:t−1)dθt−1

=

∫
p(θt|θt−1, y1:t−1)p(θt−1|y1:t−1)dθt−1

=

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt, θt|y1:t−1)dθt

=

∫
p(yt|θt, y1:t−1)p(θt|y1:t−1)dθt

=

∫
p(yt|θt)p(θt|y1:t−1)dθt

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt, y1:t−1)p(θt|y1:t−1)

p(yt|y1:t−1)
=
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
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Smoothing In state-space models

Smoothing

Goal: p(θt|y1:T ) for t < T

Backward transition probability p(θt|θt+1, y1:T )

p(θt|θt+1, y1:T ) = p(θt|θt+1, y1:t)

=
p(θt+1|θt, y1:t)p(θt|y1:t)

p(θt+1|y1:t)

=
p(θt+1|θt)p(θt|y1:t)

p(θt+1|y1:t)

Recursive smoothing distributions p(θt|y1:T ) assuming we know p(θt+1|y1:T )

p(θt|y1:T ) =

∫
p(θt, θt+1|y1:T )dθt+1

=

∫
p(θt+1|y1:T )p(θt|θt+1, y1:T )dθt+1

=

∫
p(θt+1|y1:T )

p(θt+1|θt)p(θt|y1:t)
p(θt+1|y1:t)

dθt+1

= p(θt|y1:t)
∫

p(θt+1|θt)
p(θt+1|y1:t)

p(θt+1|y1:T )dθt+1

Start from p(θT |y1:T ).

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 131 / 224



Smoothing In DLMs

Kalman smoother

If p(θt+1|y1:T ) = N(st+1, St+1), then

p(θt|θt+1, y1:T ) = p(θt|θt+1, y1:t)

∝ p(θt+1|θt, y1:t)p(θt|y1:t)
= N(θt+1;Gt+1θt,Wt+1)N(θt;mt, Ct)

∝ N(θt;ht, Ht)

Ht = (C−1t +G>t+1W
−1
t+1Gt+1)

−1

ht = Ht(C
−1
t mt +G>t+1W

−1
t+1θt+1)

p(θt|y1:T ) =

∫
p(θt|θt+1, y1:T )p(θt+1|y1:T )dθt+1

= N(θt; st, St)

St = Ct − CtG>t+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct

st = mt + CtG
>
t+1R

−1
t+1(st+1 − at+1)
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Smoothing In DLMs

True underlying state
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Forward filtering backward sampling MCMC in DLMs

Let ψ represent any unknown, non-dynamic model parameters such that
the data follows a DLM conditional on ψ.

Yt = Ft(ψ)θt + vt vt ∼ Nm(0, Vt(ψ))
θt = Gt(ψ)θt−1 + wt wt ∼ Np(0,Wt(ψ))

p(θ0) = N(m0(ψ), C0(ψ))

For example, ψ = (V,W ) where Vt(ψ) = V and Wt(ψ) = W while
Ft(ψ) = F and Gt(ψ) = G are known, as in polynomial trend, seasonal
factor, and dynamic regression models.

The Bayesian inferential objective is then p(θ0:T , ψ|y1:T ).

While p(θ0:T |y1:T , ψ) is known analytically, generally p(θ0:T , ψ|y1:T ) is
not.

So resort to numerical methods, most often MCMC
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Forward filtering backward sampling MCMC Schemes

MCMC Schemes

Scheme I - all univariate samples

For t ∈ {0, 1, . . . , T} sample p(θt| . . .).

For j ∈ {1, . . . , J} sample p(ψj | . . .) for J parameters.

Scheme II - block sampling of states

Sample p(θ0:T | . . .).

For j ∈ {1, . . . , J} sample p(ψj | . . .) for J parameters.
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Forward filtering backward sampling MCMC Schemes

MCMC Schemes (cont.)

Scheme III - block sampling of parameters

Sample p(θ0:T | . . .).

Sample p(ψ| . . .).

e.g. polynomial trend, seasonal factor, and dynamic regression models

Scheme IV - hybrid

Sample p(ψJ ′ |ψJ\J ′ , y1:T ) for some subset J ′ of parameters.

Sample p(θ0:T | . . .).

Sample p(ψJ\J ′ | . . .).
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Forward filtering backward sampling MCMC Schemes

MCMC Schemes

Generally better to jointly sampling unknowns, a.k.a. block sampling.

Scheme I has all univariate draws

Scheme II samples latent state jointly

Scheme III samples latent state jointly and parameters jointly

Scheme IV samples some parameters ψJ ′ and all latent states jointly
and then samples remaining parameters jointly

Bottom line: if parameters are highly correlated in the posterior, it is
better to sample those parameters jointly.
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Forward filtering backward sampling Algorithm

Forward filtering backward sampling (FFBS)

Recall

p(θT |y1:T ) = N(mT , CT ) is available from filtering

p(θt|θt+1, y1:T ) = N(ht, HT ) is available from smoothing

Ht = (C−1t +G>t+1W
−1
t+1Gt+1)

−1

ht = Ht(C
−1
t mt +G>t+1W

−1
t+1θt+1)

The algorithm is then

Forward filter to obtain p(θt|y1:t) = N(mt, Ct) for all t.

Sample θT ∼ H(mT , CT ).

For t ∈ {T − 1, T − 2, . . . , 1, 0},
Calculate ht and Ht based on θt+1.
Draw θt ∼ N(ht, HT ).
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Forward filtering backward sampling Examples

Local level model
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Forward filtering backward sampling Examples

Local level model
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Forward filtering backward sampling Examples

Local level model - unknown variances

Yt = θt + vt vt ∼ Nm(0, V )
θt = θt−1 + wt wt ∼ Np(0,W )

p(θ0) = N(m0, C0)

MCMC Scheme:

Sample p(θ0:T | . . .) using FFBS

Sample p(V,W | . . .)
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Forward filtering backward sampling Examples

Nile river level

Time

N
ile

1880 1900 1920 1940 1960
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Forward filtering backward sampling Examples

Nile river level
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Forward filtering backward sampling Examples

Nile river level
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MCMC DLMs

MCMC in DLMs

Recall the inferential objective of the Bayesian approach in DLMs:

p(θ0:n, ψ|y1:n)

Since p(θ0:n, ψ|y1:n) is not typically available analytically, we commonly
use Markov chain Monte Carlo. These approaches sample from full
conditional distributions, e.g.

p(θt|θ−t, ψ, y1:n) for t = 0, 1, 2, . . . , n.

p(ψj |θ0:n, ψ−j , y1:n) for j = 1, 2, . . . , J .

These draws could be Gibbs or Metropolis-Hastings.

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 145 / 224



MCMC DLMs

MCMC Univariate Sampling Activity

Fill in ? with i or i− 1.

θ
(?)
0 ∼ p(θ0|θ(?)1 , . . . , θ

(?)
n , ψ(?), y1:n)

For t ∈ 1, . . . , n− 1, sample from

θ
(?)
t ∼ p(θt|θ(?)0 , . . . , θ

(?)
t−1, θ

(?)
t+1, . . . , θ

(?)
n , ψ(?), y1:n)

θ
(?)
n ∼ p(θn|θ(?)0 , . . . , θ

(?)
n−1, ψ

(?), y1:n)

ψ
(?)
1 ∼ p(ψ1|θ(?), ψ(?)

2 , . . . , ψ
(?)
J , y1:n)

For j ∈ 2, . . . , J − 1, sample from

ψ
(?)
j ∼ p(ψj |θ(?), ψ(?)

1 , . . . , ψ
(?)
j−1, ψ

(?)
j+1, . . . , ψ

(?)
J , y1:n)

ψ
(?)
J ∼ p(ψJ |θ(?), ψ(?)

1 , . . . , ψ
(?)
J−1, y1:n)
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MCMC DLMs

Convergence to stationary distribution

The samples (θ(i), ψ(i)) converge to samples from p(θ0:n, ψ|y1:n),
regardless of what (θ(0), ψ(0)) was.

Let’s look at an example: local level model.

Yt = θt + vt vt ∼ N(0, 2)
θt = θt−1 + wt wt ∼ N(0, 0.5)

p(θ0) = N(0, 1)

with y1 = 1. The objective is p(θ0, θ1|y1).
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MCMC DLMs

Local level convergence example
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MCMC DLMs

Traceplots
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MCMC DLMs

Running average
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MCMC DLMs

Auto-correlation plots
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MCMC Diagnostics Overview

MCMC Convergence diagnostics

Graphical techniques

Traceplots
Ergodic mean

Non-graphical techniques

Geweke diagnostic - single chain
Gelman/Rubin diagnostic - multiple chains
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MCMC Diagnostics Lack of convergence

Lack of convergence

We can never know if our chain has converged.

All convergence diagnostics detect a lack of convergence.

So instead of saying ‘the chain has converged’ you should be saying ‘the
chain shows no lack of convergence’.
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MCMC Diagnostics Burn-in

Burn-in

Definition

Burn-in is the number of MCMC iterations before the chain shows no lack
of convergence.

Burn-in is thrown-out to eliminate the bias associated with the starting
point.

If the starting point is crucial, why not start multiple chains in different
locations? With the local level model, start chain 1 at (-2000, 3000) and
start chain 2 at (3000, -2000).
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MCMC Diagnostics Burn-in

Burn-in example
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MCMC Diagnostics Burn-in

Burn-in

Definition

Burn-in is the period of time before the chain has converged.

Burn-in is thrown-out to eliminate the bias associated with the starting
point.

If the starting point is crucial, why not start multiple chains in different
locations? With the local level model, start chain 1 at (-2000, 3000) and
start chain 2 at (3000, -2000).
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MCMC Diagnostics Burn-in

Multiple chains
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MCMC Diagnostics Gelman-Rubin diagnostic

Gelman-Rubin diagnostic

Start multiple chains at locations that are overdispersed relative to
the posterior.

ANOVA comparison

Within-chain versus between-chain variances
Represented as a scale reduction factor such that values around 1
indicate no lack of convergence.
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MCMC Diagnostics Gelman-Rubin diagnostic

Local level model example

Overdispersed starting points
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MCMC Diagnostics Gelman-Rubin diagnostic

Local level model example - 100 iterations

In package coda, use function
gelman.diag.

Potential scale reduction factors:

Point est. 97.5% quantile

[1,] 1.12 1.45

[2,] 1.13 1.48

Multivariate psrf

1.09

Values substantially above 1 indicate

lack of convergence.
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MCMC Diagnostics Gelman-Rubin diagnostic

Local level model example - 1000 iterations

In package coda, use function
gelman.diag.

Potential scale reduction factors:

Point est. 97.5% quantile

[1,] 1 1.00

[2,] 1 1.00

Multivariate psrf

1.00

Values substantially above 1 indicate

lack of convergence.
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MCMC Diagnostics Length of chain

Iterations for inference

Now that no lack of convergence is apparent, how long should I run my
chain?

The longer you run the chain, the lower your Monte Carlo error.

Monte Carlo error reduces by the
√
N where N is the number of

MCMC iterations.

So, if you want a 10-fold decrease in Monte Carlo error, you need to
run 102 times your current number of iterations.
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MCMC Diagnostics Length of chain

Simple Monte Carlo example

Consider the model yi
ind∼ N(µ, 1) and our goal is to estimate E[yi] = µ.

The Monte Carlo approximation is

µ ≈ µMC =
1

n

n∑
i=1

yi

with the variance of this approximation given by

se(µMC) ≈

√√√√ 1

n(n− 1)

n∑
i=1

(yi − µMC)2 =
1√
n
sdy

where sdy is the standard deviation of the sample y = (y1, y2, . . . , yn).
Since this standard deviation converges to 1, by our model assumption
above, the standard error of the Monte Carlo estimate decrease by the
square root of n.
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MCMC Diagnostics Length of chain

Simple Monte Carlo example

At 176 simulations, the standard error of µMC is ∼ 0.07. To decrease this
to 0.007 (an order of magnitude increase in accuracy), we would need to
take a total of 176 · 102 = 17600 simulations.
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MCMC Diagnostics Length of chain

Iterations for inference
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Bayesian analysis Work flow

Work flow

Exploratory data analysis

Define a model with priors

Fit the model using MLE techniques

Inference

Fit in WinBUGS
Code it up in R/C

Choose an MCMC scheme
Find the full conditional distributions (if available)

Monitor chain convergence
Summarize the posterior

Model checking

Diagnostic plots to evaluate model assumptions, e.g. one-step head
forecasts
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Bayesian analysis Examples

Examples

Nile flow - local level model

Spain/Denmark investments - SUTSE
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Example I - Nile river level The data

Nile river level
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Example I - Nile river level The data

Nile river level
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Example I - Nile river level The model

Local level model

Yt = θt + vt vt ∼ N(0, V )
θt = θt−1 + wt wt ∼ N(0,W )

V ∼ IG(aV , bV )
W ∼ IG(aW , bW )
θ0 ∼ N(m0, C0)

where p(V,W, θ0) = p(V )p(W )p(θ0) and vt and wt are independent across
time and mutually independent of each other as well as independent of θ0.
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Example I - Nile river level The model

Non-informative priors

V ∼ IG(aV , bV )
W ∼ IG(aW , bW )
θ0 ∼ N(m0, C0)

Non-informative prior

V ∝ 1/V =⇒ aV = bV = 0
W ∝ 1/W =⇒ aW = bW = 0
θ0 ∝ 1 =⇒ m0 = 0, C0 =∞
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Example I - Nile river level The model

Informative variance priors

Informative prior for V (or W ), E[V ] = 5 with varying accuracy
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Example I - Nile river level The model

Informative state prior

“On average, the Nile flow is around 920 ± 340.” With what probability?
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Example I - Nile river level Inference

MCMC scheme

In DLMs, conditional on unknown parameters, we can sample from the
joint state vector at all times using FFBS.

p(θ0:T |V,W, y1:T ) (for references see page 161 of Petris et al.)

p(V |θ0:T ,W, y1:T )

p(W |θ0:T , V, y1:T )
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Example I - Nile river level Inference

Full conditional distributions - the hard way

p(V |θ0:T ,W, y1:T )

∝
∏T
t=1 p(yt|θt, V )p(θt|θt−1,W )p(V )p(W )p(θ0)

∝
∏T
t=1 p(yt|θt, V )p(V )

=
∏T
t=1N(yt; θt, V )IG(V ; aV , bV )

∝ V −T/2 exp
(
− 1

2V

∑T
t=1(yt − θt)2

)
V −aV −1 exp (−bV /V )

= V −(aV +T/2)−1 exp
(
−
[
bV + 1

2

∑T
t=1(yt − θt)2

]
/V
)

∝ IG
(
aV + T/2, bV + 1

2

∑T
t=1(yt − θt)2

)
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Example I - Nile river level Inference

Full conditional distributions - the hard way

p(W |θ0:T , V, y1:T )

∝
∏T
t=1 p(yt|θt, V )p(θt|θt−1,W )p(V )p(W )p(θ0)

∝
∏T
t=1 p(θt|θt−1,W )p(W )

=
∏T
t=1N(θt; θt−1,W )IG(W ; aW , bW )

∝W−T/2 exp
(
− 1

2W

∑T
t=1(θt − θt−1)2

)
W−aW−1 exp (−bW /W )

= V −(aW+T/2)−1 exp
(
−
[
bW + 1

2

∑T
t=1(θt − θt−1)2

]
/W
)

∝ IG
(
aW + T/2, bW + 1

2

∑T
t=1(θt − θt−1)2

)
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Example I - Nile river level Inference

Full conditional distributions - the easy way

Recall from HW 1b, if σ2 ∼ IG(a, b) and xi
ind∼ N(0, σ2), then

p(σ2|x1, x2, . . . , xn) = IG

(
a+ n/2, b+

1

2

n∑
t=1

x2t

)
.

Notice

V ∼ IG(aV , bV )

vt = yt − θt
ind∼ N(0, V )

p(V |y1:T , θ0:T ,W ) = p(V |y1:T , θ1:T )

= IG(aV + T/2, bV + 1
2

∑T
t=1 v

2
t )

W ∼ IG(aW , bW )

wt = θt − θt−1
ind∼ N(0,W )

p(W |y1:T , θ0:T , V ) = p(W |θ1:T )

= IG(aW + T/2, bW + 1
2

∑T
t=1w

2
t )
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Example I - Nile river level Inference

MCMC scheme revisited

p(θ0:T | . . .) using FFBS

p(V | . . .) = IG(aV + T/2, bV + 1
2

∑T
t=1 v

2
t )

p(W | . . .) = IG(aW + T/2, bW + 1
2

∑T
t=1w

2
t )

Notice that p(V | . . .) doesn’t depend on W and p(W | . . .) doesn’t depend
on V . So our scheme is actually

p(θ0:T | . . .) using FFBS

p(V,W | . . .) =
IG(aV + T/2, bV + 1

2

∑T
t=1 v

2
t )IG(aW + T/2, bW + 1

2

∑T
t=1w

2
t )
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Example I - Nile river level Inference

Coding it up

Begin by creating a function to draw from the posterior of a conjugate
inverse gamma

drawIGpost <- function(x, a=0, b=0) {

return(rinvgamma(1, a+length(x)/2, b+sum(x^2)/2))

}
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Example I - Nile river level Inference

Coding it up

Begin by creating a function to draw from the posterior of a conjugate
inverse gamma

for (i in 1:n.reps) {

cat(i,"\n")

# Sample states

mod <- dlmModPoly(1, dV=V, dW=W)

filt <- dlmFilter(Nile, mod)

theta <- dlmBSample(filt)

# Sample V and W

V <- drawIGpost(y-theta[-1])

W <- drawIGpost(theta[-1]-theta[-n])

# Save iterations

V.reps[i] <- V

W.reps[i] <- W

theta.reps[i,] = theta

}
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Example I - Nile river level Inference

Running the MCMC

Run 1

Run 1 chain starting from the MLEs
Check traceplots for this run
Obtain posterior summaries for model parameters
Choose initial values that are < minimum and > maximum for each
model parameter

Multi-runs

Start multiple chains from combinations of these values
Check traceplots and Gelman-Rubin diagnostic for these chains
Discard burn-in and produce posterior summaries on remaining
iterations
If more iterations are needed, initialize new chains from the last
iteration of the old chains
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Example I - Nile river level Inference

Monitoring convergence

Use plot.mcmc in coda package.
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Example I - Nile river level Inference

Monitoring convergence

Use plot.mcmc in coda package.
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Example I - Nile river level Inference

Monitoring convergence

Use plot.mcmc in coda package.
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Example I - Nile river level Inference

Gelman-Rubin diagnostic

> gelman.diag(window(mcmc.results,1,4000))

Potential scale reduction factors:

Point est. 97.5% quantile

V.reps 1.00 1.00

W.reps 1.00 1.00

1.00 1.00

1.00 1.00

1.00 1.01

1.00 1.00

Multivariate psrf

1.01
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Example I - Nile river level Inference

Posterior summaries

> summary(window(mcmc.results,4001,5000))

Iterations = 4001:5000

Thinning interval = 1

Number of chains = 4

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

V.reps 15642.8 3187.29 50.3955 125.8969

W.reps 1630.4 1449.03 22.9111 100.2639

1107.9 73.84 1.1676 1.3148

1108.7 62.93 0.9951 1.1196

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

V.reps 9854.5 13459.2 15450.6 17640.9 22337.6

W.reps 241.2 651.7 1183.1 2092.0 5529.9

964.9 1060.0 1106.7 1153.6 1261.0

987.1 1066.5 1107.5 1149.0 1238.8
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Example I - Nile river level Inference

Posterior summaries
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Example I - Nile river level Inference

Posterior summaries
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Example I - Nile river level Inference

Posterior summaries
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Example I - Nile river level Inference

Summaries of functions of parameters

The posterior for f(ψ) is available using the MCMC simulations by
plugging our iterations ψ(i) into f(·) and calculating desired quantities,
e.g.

E[f(ψ)] ≈ 1

n

n∑
i=1

f(ψ(i)).

For example,

f(θ0:T , V,W ) =
√

(V )

f(θ0:T , V,W ) =
√

(W )

f(θ0:T , V,W ) = W/V (signal-to-noise ratio)

f(θ0:T , V,W ) = P (W/V < 1)
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Example I - Nile river level Inference

Standard deviations
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Example I - Nile river level Inference

Signal-to-noise ratio

Signal−to−noise ratio (r=W/V)

p(
r|

y)
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P (r < 1) = 0.998.
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d inverse gamma priors Model

The model

Yt = Ftθt + vt vt ∼ N(0, V )
θt = Gtθt−1 + wt wt ∼ Np(0,W )

where V is scalar and W is diagonal with elements Wi and assumed priors

p(V,W1, . . . ,Wp, θ0) = p(V )p(θ0)
∏p
i=1 p(Wi)

V ∼ IG(aV , bV )
Wi ∼ IG(aWi , bWi)
θ0 ∼ N(m0, C0)
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d inverse gamma priors Linear trend example

Linear trend model

For example
Yt = Fθt + vt vt ∼ N(0, V )
θt = Gθt−1 + wt wt ∼ Np(0,W )

where F = (1, 0), G[1, 1] = G[1, 2] = G[2, 2] = 1, G[2, 1] = 0, and W is
diagonal with elements Wi and assumed priors

p(V,W1, . . . ,Wp, θ0) = p(V )p(θ0)p(W1)p(W2)
V ∼ IG(aV , bV )
W1 ∼ IG(aW1 , bW1)
W2 ∼ IG(aW2 , bW2)
θ0 ∼ N(m0, C0)
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d inverse gamma priors Linear trend example

Rewrite the linear trend model

Yt = µt + vt vt ∼ N(0, σ2)
µt = µt−1 + βt + wt,1 wt,1 ∼ N(0, σ2µ)

βt = βt−1 + wt,2 wt,2 ∼ N(0, σ2β)

where wt,1 and wt,2 are independent.

What are the full conditionals for σ2, σ2µ, and σ2β?

p(σ2| . . .) = IG
(
aσ2 + T/2, bσ2 + 1

2

∑T
t=1 v

2
t

)
p(σ2µ| . . .) = IG

(
aσ2

µ
+ T/2, bσ2

µ
+ 1

2

∑T
t=1w

2
t,1

)
p(σ2β| . . .) = IG

(
aσ2

β
+ T/2, bσ2

β
+ 1

2

∑T
t=1w

2
t,2

)
and importantly, they are independent!
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d inverse gamma priors General models

More generally

Yt = Ftθt + vt vt ∼ N(0, V )
θt = Gtθt−1 + wt wt ∼ Np(0,W )

where W is diagonal with elements Wi and all variances have independent
inverse gamma priors.

The full conditionals for parameters are

p(V | . . .) = IG
(
aV + T/2, bV + 1

2

∑T
t=1 v

2
t

)
p(Wi| . . .) = IG

(
aWi + T/2, bWi + 1

2

∑T
t=1w

2
t,i

)
and again, they are independent!
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d inverse gamma priors MCMC scheme

MCMC scheme for models with d inverse gamma priors

Two-stage Gibbs sampler

Use FFBS to sample from p(θ0:T | . . .)
Jointly sample V,W1, . . . ,Wp by sampling their full conditionals

p(V | . . .)
p(Wi| . . .) for i ∈ (1, 2, . . . , p).

Implemented in dlmGibbsDIG.
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Unknown covariance matrices Model

Suppose we assume the model

Yt = Ftθt + vt vt ∼ Nm

(
0,Φ−10

)
θt = Gtθt−1 + wt wt ∼ Np

(
0,Φ−11

)
where Φ0 is an m×m observation precision matrix and Φ1 is a p× p
evolution precision matrix. It will be convenient to choose independent
Wishart distributions for the prior for these precision matrices, i.e.

p (Φ0,Φ1) = p (Φ0) p (Φ1) =W (Φ0; ν0, S0)W (Φ1; ν1, S1)

where

W(P ; ν, S) =
|S|ν |P |

ν−p−1
2

Γp(ν)
exp (−tr(SP ))

is a distribution on symmetric, positive definite matrices P with
parameters ν > (p− 1)/2 and S, symmetric non-singular matrix.
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Unknown covariance matrices Full conditionals

Full conditionals for the precision matrices

Wishart distributions are conditionally conjugate in this model:

p (Φ0| . . .) =W
(
ν0 + T/2, S0 +

1

2
SSy

)
where SSy =

∑T
t=1 (yt − Ftθt) (yt − Ftθt)>.

p (Φ1| . . .) =W
(
ν1 + T/2, S1 +

1

2
SSθ

)
where SSθ =

∑T
t=1 (θt −Gtθt−1) (θt −Gtθt−1)>.

Again, p (Φ0,Φ1| . . .) = p (Φ0| . . .) p (Φ1| . . .).

To draw from these distributions, use rwishart in dlm package which has
arguments degrees of freedom δ and scale matrix V −10 where
W(δ/2, V0/2).
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d inverse Wisharts The model

The model

Consider the model with block-diagonal evolution covariance:

Yt = Ftθt + vt vt ∼ Nm(0,Φ−10 )
θt = Gtθt−1 + wt wt ∼ Np∗(0,W )

where W is block-diagonal with elements Wi.Set Φ−1i = Wi and give
Φ0,Φ1, . . . ,Φd independent Wishart priors Φi ∼ W(νi, Si).
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d inverse Wisharts The model

Rewritten univariate model

For combining individual components, e.g. polynomial trend, seasonal,
dynamic regression, Gt is block diagonal with elements Gi,t relating to Wi

and the model can be re-written

Yt = Ftθt + vt vt ∼ N(0,Φ−10 )

θ1,t = G1,tθ1,t−1 + w1,t w1,t ∼ Np1(0,Φ−11 )
...

θi,t = Gi,tθi,t−1 + wi,t wi,t ∼ Npi(0,Φ
−1
i )

...

θp,t = Gp,tθp,t−1 + wp,t wp,t ∼ Npd(0,Φ
−1
d )

where wi,t are independent across i. Then

SSii,t = (θi,t −Gi,tθi,t−1)(θi,t −Gi,tθi,t−1)>.
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d inverse Wisharts The model

Multivariate models

Let
SSt = (θt −Gtθt−1)(θt −Gtθt−1)>

and partition it according to

SSt =

 SS11,t · · · SS1d,t
...

. . .
...

SSd1,t · · · Sdd,t


where the partition is according to the partition in
Φ = blockdiag(Φ1, . . . ,Φd).
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d inverse Wisharts Full conditional distributions

Full conditional distributions

p
(
Φ−10 | . . .

)
=W

(
ν0 + T/2, S0 +

1

2
SSy

)
where SSy =

∑T
t=1 (yt + Ftθt) (yt − Ftθt)>.

p
(
Φ−1i | . . .

)
=W

(
νi + T/2, Si +

1

2
SSθi

)
where SSθi =

∑T
t=1 SSii,t given on the previous page.

Once again, p
(
Φ−10 ,Φ−11 , . . . ,Φ−1d | . . .

)
= p

(
Φ−10 | . . .

)∏d
i=1 p

(
Φ−1i | . . .

)
.

Jarad Niemi (STAT615@ISU) Dynamic linear models October 10, 2017 203 / 224



SUTSE example Data

Denmark and Spain investments
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SUTSE example Model

SUTSE model

Yt = (F ⊗ I2)θt + vt vt ∼ N2(0,Φ
−1
0 )

θt = (G⊗ I2)θt−1 + wt wt ∼ N4(0,W )

where W = blockdiag(W1,W2), Φ−11 = W1, and Φ−12 = W2.

Assume independent Wishart priors

p(Φ0) =W
(
δ0+1
2 , 12V0

)
V0 = (δ0 − 2)

[
102 0
0 5002

]
p(Φ1) =W

(
δ1+1
2 , 12Wµ,0

)
Wµ,0 = (δ1 − 2)

[
0.012 0

0 0.012

]
p(Φ2) =W

(
δ2+1
2 , 12Wβ,0

)
Wβ,0 = (δ2 − 2)

[
52 0
0 1002

]
where δ0 = δ2 = 3 and δ1 = 100.
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SUTSE example MCMC

MCMC sampling

MCMC Scheme:

Sample θ0:T ∼ p(θ0:T | . . .) using FFBS

Sample p(Φ0,Φ1,Φ2| . . .) jointly

p(Φ0| . . .) =W
(
δ0+1+T

2 , 12(V0 + SSy)
)

p(Φ1| . . .) =W
(
δ1+1+T

2 , 12(Wµ,0 + SS1·)
)

p(Φ2| . . .) =W
(
δ2+1+T

2 , 12(Wβ,0 + SS2·)
)

where

SSi· =

T∑
t=1

SSii,t.

provided earlier.
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SUTSE example MCMC

Convergence and autocorrelation
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SUTSE example MCMC

Convergence
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SUTSE example MCMC

Convergence
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SUTSE example Inference

Posterior covariance expectations

E[V |y1:T ] =

[
86 (1) 1026 (23)

59340 (807)

]

E[Wµ|y1:T ] = 1e− 5

[
9.97 (0.02) 0.016 (0.014)

10.04 (0.02)

]

E[Wβ|y1:T ] =

[
38.3 (0.8) 305 (41)

311073 (2346)

]
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SUTSE example Inference

Posterior µt
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Missing data Types

Types of missing data

Complete data Yi,t and missing indicator Mi,t where Mi,t = 1 if
observation Yit is missing and 0 otherwise. Let Yobs contain all the data
that is observed while Ymis contains all the data that is missing with
Y = (Yobs, Ymis). Then several types of missing-ness are possible:

Missing completely at random (MCAR)

p(M |Y, φ) = p(M |φ).

Missing at random (MAR)

p(M |Y, φ) = p(M |Yobs, φ).

Not missing at random

p(M |Y, φ) depends on Ymis.

We will only consider MCAR.
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Missing data Types

No missing data
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Missing data Types

Missing completely at random
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Missing data Types

Not missing at random
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Missing data in DLMs

Missing data in multivariate DLMs

Two situations:

Totally missing: at time t, Yt is completely missing

Partially missing: at time t, part of Yt is observed
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Missing data in DLMs

Totally missing

Recall ‘Kalman filter’ lecture: missing data are handled trivially while
filtering.

mt = at Ct = Rt.

Unknown fixed parameters are sampled without these data, e.g. scalar V

p(φV | . . .) = G
(
a+ T ′

2 , b+
∑

t∈obs(yt − Ftθt)2
)

where ‘obs’ is a vector of times when the data are observed and T ′ ≤ T is
the length of obs.

e.g. matrix V

p(ΦV | . . .) = W
(
a+ T ′

2 , b+
∑

t∈obs(yt − Ftθt)(yt − Ftθt)>
)
.
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Missing data in DLMs

Partially missing when filtering

Suppose Mt is the matrix that is built by taking an identity matrix and
removing the rows of any missing observations in yt. Then ỹt = Mtyt
contains only the observed data. The correct observation equation to
consider is

ỹt = F̃tθt + ṽt ṽt ∼ N(0, Ṽt).

What are F̃t and Ṽt?

F̃t = MtFt

Ṽt = MtVtM
>
t
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Missing data in DLMs

Partially missing in MCMC

Let Y = (Yobs, Ymis). If we build an MCMC with only the observed data,
then our scheme will look like

Sample p(θ|Yobs, ψ) via FFBS

Sample p(ψ|Yobs, θ).

For example, consider the observation precision matrix ΦV as the only
unknown parameter. What is it’s full conditional distribution?

p(ΦV |Yobs, θ) ∝ p(Yobs|ΦV , θ)p(ΦV )

Who knows?
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Missing data in DLMs

Partially missing in MCMC

Let Y = (Yobs, Ymis). Augment the MCMC to simulate the missing
values, then our scheme will look like

Sample p(θ|Y, ψ) via FFBS

Sample p(ψ|Y, θ)
Sample p(Ymis|Yobs, θ, ψ).

This works since

p(θ, ψ|Yobs) =

∫
p(θ, ψ, Ymis|Yobs)dYmis.
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Missing data in DLMs

Partially missing in MCMC

How to simulate p(Ymis|Yobs, θ, ψ)?

First note,

p(Ymis|Yobs, θ, ψ) =

T∏
t=1

p(Ymis,t|Yobs,t, θt, ψ).

Second note,(
Ymis,t
Yobs,t

)
∼ N

([
Fθmis,t
Fθobs,t

]
,

[
Vmis Vm,o
Vo,m Vobs

])
.
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Forecasting

Goal

With all fixed parameters known:

p(yt+k, θt+k|y1:t) =
∫
p(yt+k, θt+k, θt+(k−1)|y1:t)dθt+(k−1)

=
∫
p(yt+k, θt+k|θt+(k−1))p(θt+(k−1)|y1:t)dθt+(k−1)

To get p(yt+k, θt+k|θt) just use the Kalman filter with missing data from
yt+1 up to yt+(k−1).

With unknown fixed parameters:

p(yt+k, θt+k|y1:t) =
=
∫
p(yt+k, θt+k|θt+(k−1), ψ)p(θt+(k−1), ψ|y1:t)dθt+(k−1)dψ.

Now we can’t just use the Kalman filter due to the unknown fixed
parameters. Instead, we need to integrate over their posteriors.
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Forecasting Integrating over Kalman filters

MCMC Forecasting

After completing the MCMC, follow this procedure

For each iteration j = 1, 2, . . . , J in the MCMC chain post burn-in:

Run a Kalman filter (dlmFilter) on your data using ψ(j) to obtain

p(θt|y1:t, ψ(j)) = N(m
(j)
t , C

(j)
t ).

Forecast ahead (dlmForecast) to obtain
p(yt+k|y1:t, ψ(j)) = N(ft(k)(j), Qt(k)(j)) (see section 2.8 in Petris)
Calculate mean and 95% intervals for p(yt+k|y1:t, ψ(j)), i.e.

ft(k)(j) (ft(k)(j) − 1.96
√
Qt(k)(j), ft(k)(j) + 1.96

√
Qt(k)(j)) if Q is

scalar, otherwise do this component-wise.

This provides a set of means and 95% intervals, one for each MCMC
iteration j.
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Forecasting Integrating over Kalman filters

MCMC Forecasting

To find the marginal mean and 95% interval, average these means and
95% intervals for all j, i.e.

E[yt+k|y1:t] ≈
1

J

J∑
j=1

ft(k)(j)

Q2.5%[yt+k|y1:t] ≈
1

J

J∑
j=1

ft(k)(j) − 1.96
√
Qt(k)(j)

Q97.5%[yt+k|y1:t] ≈
1

J

J∑
j=1

ft(k)(j) + 1.96
√
Qt(k)(j)

If you have many MCMC iterations, you can use fewer iterations for this
forecast by thinning the chain.
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