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Normal data model Normal prior

Normal model with normal prior

Consider the model
Y ∼ N(θ,V )

with prior
θ ∼ N(m,C )

Then the posterior is
θ|y ∼ N(m′,C ′)

where
C ′ = 1/(1/C + 1/V )
m′ = C ′[m/C + y/V ]
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Normal data model Normal prior

Normal model with normal prior (cont.)

For simplicity, let V = C = 1 and m = 0, then θ|y ∼ N(y/2, 1/2). Suppose y = 1, then we
have
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Normal data model Normal prior

Normal model with normal prior (cont.)

Now suppose y = 10, then we have
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Normal data model Normal prior

Summary - normal model with normal prior

If the prior and the likelihood agree, then posterior seems reasonable.

If the prior and the likelihood disagree, then the posterior is ridiculous.

The posterior precision is always the sum of the prior and data precisions and therefore
the posterior variance always decreases relative to the prior.

The posterior mean is always the precision weighted average of the prior and data.

Can we construct a prior that allows the posterior to be reasonable always?
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Normal data model t prior

Normal model with t prior

Now suppose
Y ∼ N(θ,V )

with
θ ∼ tv (m,C ),

where E [θ] = m for v > 1 and Var [θ] = C v
v−2 for v > 2.

Now the posterior is

p(θ|y) ∝ e−(y−θ)
2/2V

(
1 +

1

v

(θ −m)2

C

)−(v+1)/2

which is not a known distribution, but we can normalize via

p(θ|y) =
e−(y−θ)

2/2V
(

1 + 1
v
(θ−m)2

C

)−(v+1)/2

∫
e−(y−θ)2/2V

(
1 + 1

v
(θ−m)2

C

)−(v+1)/2
dθ
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Normal data model t prior

Normal model with t prior (cont.)

Alternatively, we can calculate the marginal likelihood

p(y) =
∫
p(y |θ)p(θ)dθ

=
∫
N(y ; θ,V )tv (θ;m,C )dθ

where

N(y ; θ,V ) is the normal density with mean θ and variance V evaluated at y and

tv (θ;m,C ) is the t distribution with degrees of freedom v , location m, and scale C
evaluated at θ.

and then find the posterior

p(θ|y) = N(y ; θ,V )tv (θ;m,C )/p(y).
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Normal data model t prior

Normal model with t prior (cont.)

Since this is a one dimensional integration, we can easily handle it via the integrate function
in R:

# A non-standard t distribution

my_dt = Vectorize(function(x, v=1, m=0, C=1, log=FALSE) {
logf = dt((x-m)/sqrt(C), v, log=TRUE) - log(sqrt(C))

if (log) return(logf)

return(exp(logf))

})

# This is a function to calculate p(y|\theta)p(\theta).
f = Vectorize(function(theta, y=1, V=1, v=1, m=0, C=1, log=FALSE) {

logf = dnorm(y, theta, sqrt(V), log=TRUE) + my_dt(theta, v, m, C, log=TRUE)

if (log) return(logf)

return(exp(logf))

})

# Now we can integrate it

(py = integrate(f, -Inf, Inf))

## 0.1657957 with absolute error < 1.6e-05
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Normal data model t prior

Normal model with t prior (cont.)

Let v = 1, m = 0, V = C = 1 and y = 1. then
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Normal data model t prior

Normal model with t prior (cont.)

Let v = 1, m = 0, V = C = 1, and y = 10. then
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Normal data model t prior

Shrinkage of MAP as a function of signal

Let’s take a look at the maximum a posteriori (MAP) estimates as a function of the signal (y)
for the normal and t priors.
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Normal data model t prior

Summary - normal model with t prior

A t prior for a normal mean provides a reasonable posterior even if the data and prior
disagree.

A t prior provides similar shrinkage to a normal prior when the data and prior agree, but
provides little shrinkage when the data and prior disagree.

The posterior variance decreases the most when the data and prior agree and decreases
less as the data and prior disagree.

There are many times that we might believe the possibility of θ = 0 or, at least, θ ≈ 0. In
these scenarios, we would like our prior to be able to tell us this.

Can we construct a prior that allows us to learn about null effects?
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Normal data model Laplace prior

Laplace distribution

Let La(m, b) denote a Laplace (or double exponential) distribution with mean m, variance 2b2,
and probability density function

La(x ;m, b) =
1

2b
exp

(
−|x −m|

b

)
.
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Normal data model Laplace prior

Laplace prior

Let
Y ∼ N(θ,V )

and
θ ∼ La(m, b)

Now the posterior is

p(θ|y) =
N(y ; θ,V )La(θ;m, b)

p(y)
∝ e−(y−θ)

2/2V e−|θ−m|/b

where

p(y) =

∫
N(y ; θ,V )La(θ;m, b)dθ.
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Normal data model Laplace prior

Laplace prior (cont.)

For simplicity, let b = V = 1, m = 0 and suppose we observe y = 1.
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Normal data model Laplace prior

Laplace prior (cont.)

For simplicity, let b = V = 1, m = 0 and suppose we observe y = 10.
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Normal data model Laplace prior

Laplace prior - MAP as a function of signal
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Normal data model Laplace prior

Summary - Laplace prior

For small signals, the MAP is zero (or m).

For large signals, there is less shrinkage toward zero (or m) but more shrinkage than a t
distribution.

For large signals, the shrinkage is constant, i.e. it doesn’t depend on y .

It’s fine that the MAP is zero, but since the posterior is continuous, we have P(θ = 0|y) = 0
for any y .

Can we construct a prior such that the posterior has mass at zero?
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Normal data model Point-mass prior

Dirac δ function

Let δc(x) be the Dirac δ function, i.e. formally

δc(x) =

{
∞ x = c
0 x 6= c

and ∫ ∞
−∞

δc(x)dx = 1.

Thus θ ∼ δc
d
= δc(θ) indicates that the random variable θ is a degenerate random variable

with P(θ = c) = 1.
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Normal data model Point-mass prior

Point-mass distribution

Let
θ ∼ pδ0 + (1− p)N(m,C )

be a distribution such that the random variable θ

is 0 with probability p and

a normal random variable with mean m and variance C with probability (1− p).

If p = 0.5, m = 0, and C = 1, it’s cumulative distribution function is

−2 −1 0 1 2

0.
0

0.
4

0.
8

θ

C
D

F

Jarad Niemi (Iowa State) Shrinkage priors September 2, 2021 20 / 30



Normal data model Point-mass prior

Point-mass prior

Suppose
Y ∼ N(θ,V )

and
θ ∼ pδ0 + (1− p)N(m,C ).

Then
θ|y ∼ p′δ0 + (1− p′)N(m′,C ′)

where

p′ = pN(y ;0,V )
pN(y ;0,V )+(1−p)N(y ;m,C+V ) =

(
1 + (1−p)

p
N(y ;m,C+V )
N(y ;0,V )

)−1
C ′ = 1/(1/V + 1/C )
m′ = C ′(y/V + m/C )
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Normal data model Point-mass prior

Point-mass prior (cont.)

For simplicity, let V = C = 1, p = 0.5, m = 0 and y = 1. Then
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Normal data model Point-mass prior

Point-mass prior (cont.)

For simplicity, let V = C = 1, p = 0.5, and m = 0. Suppose we observe y = 1.
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Normal data model Point-mass prior

Summary - point-mass prior

For small signals, the posterior puts most of its mass at zero (or m).

For large signals, the posterior puts most of its mass away from zero (or m) and therefore
has the same problems that a normal prior has.

Can we create a prior that 1) puts most of the posterior mass at zero for small signals and 2)
leaves large signals unshrunk?

Jarad Niemi (Iowa State) Shrinkage priors September 2, 2021 24 / 30



Normal data model Point-mass prior

Point-mass prior with t distribution

Suppose
Y ∼ N(θ,V )

and
θ ∼ pδ0 + (1− p)tv (m,C ).

Then
θ|y ∼ p′δ0 + (1− p′) ?

where

p′ =

(
1 +

(1− p)
∫
N(y ; θ,V )tv (θ;m,C )dθ

pN(y ; 0,V )

)−1
and

? ∝ N(y ; θ,V )tv (θ;m,C ).

But we already calculated this posterior earlier in the lecture, i.e. normal model with t prior.
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Normal data model Point-mass prior

Point-mass prior with t distribution (cont.)

Suppose v = V = C = 1, p = 0.5, m = 0, and y = 1.

Then, we can calculate the following integral (marginal likelihood) numerically∫
N(y ; θ,V )tv (θ;m,C )dθ

v = C = V = 1; p = 0.5; m = 0; y=1

(int = integrate(function(x) dnorm(y,x,sqrt(V))*my_dt(x), -Inf, Inf))

## 0.1657957 with absolute error < 1.6e-05

(int0 = dnorm(y,0,sqrt(V)))

## [1] 0.2419707

(pp = 1/(1+(1-p)*int$value/(p*int0)))

## [1] 0.5934053
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Normal data model Point-mass prior

Point-mass prior with t distribution (cont.)

Suppose v = V = C = 1, p = 0.5, and m = 0. And we observe y = 1.
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Normal data model Point-mass prior

Point-mass prior with t distribution (cont.)

Suppose v = V = C = 1, p = 0.5, and m = 0. And we observe y = 10.
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Normal data model Summary

Summary

Heavy tails allow the likelihood to easily overwhelm the prior.

A peak allows “complete” shrinkage.
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Normal data model Discussion

Discussion questions

What would happen if we tried to take this idea to the logical extreme by having a
point-mass prior with an improper distribution for the non-point mass portion?

Why do the phrases “random effects” or “mixed effects” imply a normal distribution for
the random effects?
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