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Normal hierarchical model

Let
Yig

ind∼ N(θg , σ
2)

for i = 1, . . . , ng , g = 1, . . . ,G , and
∑G

g=1 ng = n. Now consider the following model
assumptions:

θg
ind∼ N(µ, τ2)

θg
ind∼ La(µ, τ)

θg
ind∼ tv (µ, τ2)

θg
ind∼ πδ0 + (1− π)N(µ, τ2)

θg
ind∼ πδ0 + (1− π)tv (µ, τ2)

To perform a Bayesian analysis, we need a prior on µ, τ2, and (in the case of the discrete
mixture) π.
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Gibbs sampling

Normal hierarchical model

Consider the model

Yig
ind∼ N(θg , σ

2)

θg
ind∼ N(µ, τ2)

where i = 1, . . . , ng , g = 1, . . . ,G , and n =
∑G

g=1 ng with prior distribution

p(µ, σ2, τ2) = p(µ)p(σ2)p(τ2) ∝ 1
σ2Ca

+(τ ; 0,C ).

For background on why we are using these priors for the variances, see Gelman (2006)
https://projecteuclid.org/euclid.ba/1340371048: “Prior distributions for variance
parameters in hierarchical models (comment on article by Browne and Draper)”.
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Gibbs sampling Multi-step

Gibbs sampler for normal hierarchical model

Here is a possible Gibbs sampler for this model:

For g = 1, . . . ,G , sample θg ∼ p(θg | · · · ).

Sample σ2 ∼ p(σ2| · · · ).

Sample µ ∼ p(µ| · · · ).

Sample τ2 ∼ p(τ2| · · · ).

How many steps exist in this Gibbs sampler? G+3? 4?
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Gibbs sampling 2-Step

2-Step Gibbs sampler for normal hierarchical model

Here is a 2-step Gibbs sampler:

1. Sample θ = (θ1, . . . , θG ) ∼ p(θ| · · · ).

2. Sample µ, σ2, τ2 ∼ p(µ, σ2, τ2| · · · ).

There is stronger theoretical support for 2-step Gibbs sampler, thus, if we can, it is prudent to
construct a 2-step Gibbs sampler.
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Gibbs sampling Sampling θ

Sampling θ

The full conditional for θ is

p(θ| · · · ) ∝ p(θ, µ, σ2, τ2|y)
∝ p(y |θ, σ2)p(θ|µ, τ2)p(µ, σ2, τ2)
∝ p(y |θ, σ2)p(θ|µ, τ2)

=
∏G

g=1 p(yg |θg , σ2)p(θg |µ, τ2)

where yg = (y1,g , . . . , yng ,g ). We now know that the θg are conditionally independent of each
other.
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Gibbs sampling Sampling θg

Sampling θg

The full conditional for θg is

p(θg | · · · ) ∝ p(yg |θg , σ2)p(θg |µ, τ2)
=
∏ng

i=1N(yig ; θg , σ
2)N(θg ;µ, τ2)

Notice that this does not include θg ′ for any g ′ 6= g . This is an alternative way to conclude
that the θg are conditionally independent of each other.

Thus
θg | · · ·

ind∼ N(µg , τ
2
g )

where
τ2g = [τ−2 + ngσ

−2]−1

µg = τ2g [µτ−2 + ygngσ
−2]

yg = 1
ng

∑ng
i=1 yig .
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Gibbs sampling Sampling µ, σ2, τ2

Sampling µ, σ2, τ 2

The full conditional for µ, σ2, τ2 is

p(µ, σ2, τ2| · · · ) ∝ p(y |θ, σ2)p(θ|µ, τ2)p(µ)p(σ2)p(τ2)
= p(y |θ, σ2)p(σ2)p(θ|µ, τ2)p(µ)p(τ2)

So we know that, conditional on θ and y , σ2 is independent of µ and τ2.
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Gibbs sampling Sampling σ2

Sampling σ2

Recall that
yig

ind∼ N(θg , σ
2) and p(σ2) ∝ 1/σ2.

Thus, we are in the scenario of normal data with a known mean and unknown variance and
the unknown variance has our default prior. Thus, we should know the full conditional is

σ2| · · · ∼ IG
(
n
2 ,

1
2

∑G
g=1

∑ng
i=1(yig − θg )2

)
.

To derive the full conditional, use

p(σ2| · · · ) ∝
∏G

g=1

∏ng
i=1(σ2)−1/2 exp

(
− 1

2σ2 (yig − θg )2
)

1
σ2

= (σ2)−n/2−1 exp
(
−1

2

∑G
g=1

∑ng
i=1(yig − θg )2

/
σ2
)

which is the kernel of a IG
(
n
2 ,

1
2

∑G
g=1

∑ng
i=1(yig − θg )2

)
.
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Sampling µ, τ2

Sampling µ, τ 2

Recall that
θg

ind∼ N(µ, τ 2) and p(µ, τ 2) ∝ Ca+(τ ; 0,C ).

This is a non-standard distribution, but is extremely close a normal model with unknown mean and
variance with the standard non-informative prior p(µ, τ 2) ∝ 1/τ 2 or the conjugate
normal-inverse-gamma prior.

Here are some options for sampling from this distribution:

random-walk Metropolis (in 2 dimensions),

independent Metropolis-Hastings using posterior from standard non-informative prior as the
proposal, or

rejection sampling using posterior from standard non-informative prior as the proposal

The posterior under the standard non-informative prior is

τ 2| · · · ∼ Inv-χ2(G − 1, s2θ ) and µ|τ 2, . . . ∼ N
(
θ, τ 2/G

)
where θ = 1

G

∑G
g=1 θg and s2θ = 1

G−1 (θg − θ)2. What is the MH ratio?
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Sampling µ, τ2 Summary

Markov chain Monte Carlo for normal hierarchical model

1. Sample θ ∼ p(θ| · · · ):

a. For g = 1, . . . ,G , sample θg ∼ N(µg , τ
2
g ).

2. Sample µ, σ2, τ2:

a. Sample σ2 ∼ IG (n/2,SSE/2).
b. Sample µ, τ 2 using independent Metropolis-Hastings using posterior from standard

non-informative prior as the proposal.

What happens if θg
ind∼ La(µ, τ) or θg

ind∼ tv (µ, τ2)?
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Scale mixtures of normals

Scale mixtures of normals

Recall that if
θ|φ ∼ N(φ,V ) and φ ∼ N(m,C )

then
θ ∼ N(m,V + C ).

This is called a location mixture.

Now, if
θ|φ ∼ N(m,Cφ)

and we assume a mixing distribution for φ, we have a scale mixture. Since the top level
distributional assumption is normal, we refer to this as a scale mixture of normals.
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Scale mixtures of normals t distribution

t distribution

Let
θ|φ ∼ N(m, φC ) and φ ∼ IG (a, b)

then
p(θ) =

∫
p(θ|φ)p(φ)dφ

= (2π
√
C )−1/2 ba

Γ(a)

∫
φ−1/2e−(θ−m)2/2φCφ−(a+1)e−b/φdφ

= (2πC )−1/2 ba

Γ(a)

∫
φ−(a+1/2+1)e−[b+(θ−m)2/2C ]/φdφ

= (2πC )−1/2 ba

Γ(a)
Γ(a+1/2)

[b+(θ−m)2/2C ]a+1/2

= Γ([2a+1]/2)

Γ(2a/2)
√

2aπbC/a

[
1 + 1

2a
(θ−m)2

bC/a

]−[2a+1]/2

Thus
θ ∼ t2a(m, bC/a)

i.e. θ has a t distribution with 2a degrees of freedom, location m, scale bC/a, and variance
bC
a−1 .
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Scale mixtures of normals t distribution

Hierarchical t distribution

Let m = µ, C = 1, a = ν/2, and b = ντ2/2, i.e.

θ|φ ∼ N(µ, φ) and φ ∼ IG (ν/2, ντ2/2).

Then, we have

θ ∼ tν(µ, τ2),

i.e. a t distribution with ν degrees of freedom, location µ, and scale τ2.

Notice that the parameterization has a redundancy between C and a/b, i.e. we could have
chosen C = τ2, a = ν/2, and b = ν/2 and we would have obtained the same marginal
distribution for θ.
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Scale mixtures of normals t distribution

Laplace distribution

Let
θ|φ ∼ N(m, φC 2) and φ ∼ Exp(1/2b2)

where E [φ] = 2b2 and Var [φ] = 4b4. Then, by an extension of equation (4) in Park and
Casella (2008), we have

p(θ) =
1

2Cb
e−
|θ−m|
Cb .

This is the pdf for a Laplace (double exponential) distribution with location m and scale Cb
which we write

θ ∼ La(m,Cb).

and say θ has a Laplace distribution with location m and scale Cb and E [θ] = m and
Var [θ] = 2[Cb]2 = 2C 2b2.
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Scale mixtures of normals t distribution

Hierarchical Laplace distribution

Let m = µ, C = 1, and b = τ i.e.

θ|φ ∼ N(µ, φ) and φ ∼ Exp(1/2τ2).

Then, we have

θ ∼ La(µ, τ),

i.e. a Laplace distribution with location µ and scale τ .

Notice that the parameterization has a redundancy between C and b, i.e. we could have
chosen C = τ and b = 1 and we would have obtained the same marginal distribution for θ.
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Normal hierarchical model

Normal hierarchical model

Recall our hierarchical model
Yig

ind∼ N(θg , σ
2)

for g = 1, . . . ,G and i = 1, . . . , ng . Now consider the following model assumptions:

θg |φg
ind∼ N(µ, φg ), φg = τ2 =⇒ θg

ind∼ N(µ, τ2)

θg |φg
ind∼ N(µ, φg ), φg

ind∼ Exp(1/2τ2) =⇒ θg
ind∼ La(µ, τ)

θg |φg
ind∼ N(µ, φg ), φg

ind∼ IG (v/2, vτ2/2) =⇒ θg
ind∼ tv (µ, τ2)

For simplicity, let’s assume σ2 ∼ IG (a, b), µ ∼ N(m,C ), and τ ∼ Ca+(0, c) and that σ2, µ,
and τ are a priori independent.
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MCMC

Gibbs sampling

The following Gibbs sampler will converge to the posterior p(θ, σ, µ, φ, τ |y):

1. Independently, sample θg ∼ p(θg | · · · ).

2. Sample µ, σ, τ ∼ p(µ, σ, τ | · · · ):

a. Sample µ ∼ p(µ| · · · ).
b. Sample σ ∼ p(σ| · · · ).
c. Sample τ ∼ p(τ | · · · ).

3. Independently, sample φg ∼ p(φg | · · · ).

Steps 1, 2a, and 2b will be the same for all models, but steps 2c and 3 will be different.
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MCMC θ

Sample θ

Yig
ind∼ N(θg , σ

2) and θg ∼ N(µ, φg )

p(θ| · · · ) ∝
[∏G

g=1

∏ng
i=1 e

−(yig−θg )2/2σ2
] [∏G

g=1 e
−(θg−µ)2/2φg

]
∝
∏G

g=1

[∏ng
i=1 e

−(yig−θg )2/2σ2
e−(θg−µ)

2/2φg
]

Thus θg are conditionally independent given everything else. It should be obvious that

θg | · · · ∼ N
(
µ′g , φ

′
g

)
with

φ′g =

[
1

φg
+

ng
σ2

]−1
and µ′g = φ′g

[
1

φg
µ+

ng
σ2

yg

]
where yg =

∑ng
i=1 yig/ng .
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MCMC µ

Sample µ

θg
ind∼ N(µ, φg ) and µ ∼ N(m,C )

Immediately, we should know that

µ| · · · ∼ N(m′,C ′)

with

C ′ =
(

1
C +

∑G
g=1

1
φg

)−1
m′ = C ′

(
1
Cm +

∑G
g=1

1
φg
θg

)
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MCMC σ

Sample σ2

Yig
ind∼ N(θg , σ

2) and σ2 ∼ IG (a, b)

This is just a normal data model with an unknown variance that has the conjugate prior. The
only difficulty is that we have several groups here. But very quickly you should be able to
determine that

σ2| · · · ∼ IG (a′, b′)

where
a′ = a + 1

2

∑G
g=1 ng = a + n

2

b′ = b + 1
2

∑G
g=1

∑ng
i=1(yig − θg )2.
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MCMC Distributional assumption for θg

Distributional assumption for θg

Yig
ind∼ N(θg , σ

2) and θg
ind∼ N(µ, φg )

φg = τ

φg
ind∼ Exp(1/2τ2)

φg
ind∼ IG (v/2, vτ2/2)

The steps that are left are 1) sample φ and 2) sample τ2,

Jarad Niemi (Iowa State) Hierarchical models September 8, 2021 22 / 31



MCMC φ

Sample φ for normal model

For normal model, φg = τ , so we will address this when we sample τ .
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MCMC φ

Sample φ for Laplace model

For Laplace model,

θg
ind∼ N(µ, φg ) and φg

ind∼ Exp(1/2τ 2),

so the full conditional is

p(φ| · · · ) ∝

[
G∏

g=1

N(θg ;µ, φg )Exp(φg ; 1/2τ 2)

]
.

So the individual φg are conditionally independent with

p(φg | · · · ) ∝ N(θg ;µ, φg )Exp(φg ; 1/2τ 2) ∝ φ−1/2
g e−(θg−µ)2/2φg e−φg/2τ

2

If we perform the transformation ηg = 1/φg , we have

p(ηg | · · · ) ∝ η−3/2
g e

− (θg−µ)2

2 ηg− 1
2τ2ηg

which is the kernel of an inverse Gaussian distribution with mean
√

1/τ 2(θg − µ)2 and scale 1/τ 2 where
the parameterization is such that the variance is µ3/λ (different from the mgcv::rig parameterization).
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MCMC φ

Sample φ for t model

For the t model,

θg
ind∼ N(µ, φg ) and φg

ind∼ IG (v/2, vτ2/2),

so we have

φg | · · ·
ind∼ IG

(
v + 1

2
,
vτ2 + (θg − µ)2

2

)
.

Since this is just G independent normal data models with a known mean and independent
conjugate inverse gamma priors on the variance.
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MCMC τ

Sample τ for normal model

Let
θg

ind∼ N(µ, τ 2) and τ ∼ Ca+(0, c)

and η = τ 2. The full conditional is

p(η| · · · ) ∝ η−G/2e−
∑G

g=1(θg−µ)
2/2η

(
1 + η/c2

)−1
η−1/2.

Let’s use Metropolis-Hastings with proposal distribution

η∗ ∼ IG

(
G − 1

2
,

G∑
g=1

(θg − µ)2

2

)
and acceptance probability min{1, ρ} where

ρ =

(
1 + η∗/c2

)−1(
1 + η(i)/c2

)−1 =
1 + η(i)/c2

1 + η∗/c2

where η(i) and η∗ are the current and proposed value respective.

Then we calculate τ =
√
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MCMC τ

Sample τ for Laplace model

Let
φg ∼ Exp(1/2τ2) and τ ∼ Ca+(0, c)

so the full conditional is

p(η| · · · ) ∝ η−Ge−
∑G

g=1 φg/2η
(
1 + η/c2

)−1
η−1/2.

Let’s use Metropolis-Hastings with proposal distribution

η∗ ∼ IG

G − 1

2
,

G∑
g=1

φg
2


and acceptance probability min{1, ρ} where again

ρ =
1 + η(i)/c2

1 + η∗/c2
.
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MCMC τ

Sample τ for t model

Let
φg ∼ IG (v/2, vτ2/2) and τ ∼ Ca+(0, c)

so the full conditional is

p(η| · · · ) ∝ ηGv/2e−
η
2

∑G
g=1

1
φg
(
1 + η/c2

)−1
η−1/2.

Let’s use Metropolis-Hastings with proposal distribution

η∗ ∼ Ga

Gv + 1

2
,

1

2

G∑
g=1

1

φg


and acceptance probability min{1, ρ} where again

ρ =
1 + η(i)/c2

1 + η∗/c2
.

Then we calculate τ =
√
η.
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MCMC Point-mass distributions

Dealing with point-mass distributions

We would also like to consider models with

θg
ind∼ πδ0 + (1− π)N(µ, φg )

where φg = τ2 corresponds to a normal and

φg
ind∼ IG (v/2, vτ2/2)

corresponds to a t distribution for the non-zero θg .

Similar to the previous, the θg are conditionally independent. To sample θg , we calculate

π′ =
π
∏ng

i=1 N(yig ;0,σ
2)

π
∏ng

i=1 N(yig ;0,σ2)+(1−π)
∏ng

i=1 N(yig ;µ,φg+σ2)
.

φ′g =
(

1
φg

+
ng
σ2

)−1
µ′g = φ′g

(
1
φg
µ+

ng
σ2 yg

)
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MCMC Point-mass distributions

Dealing with point-mass distributions (cont.)

Let
θg

ind∼ πδ0 + (1− π)f (θg )

and π ∼ Beta(s, f ).

The full conditional for π is

π| · · · ∼ Beta

s +
G∑

g=1

I(θg = 0), f +
G∑

g=1

I(θg 6= 0)


and µ and φg get updated using only those θg that are non-zero.
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MCMC Point-mass distributions

Dealing with point-mass distributions (cont.)

Updating µ, φg , and τ will be very similar. Specifically,

µ| · · · ∼ N(m′,C ′)

with

C ′ =
(

1
C +

∑
g :θg 6=0

1
φg

)−1
m′ = C ′

(
1
Cm +

∑
g :θg 6=0

1
φg
θg

)
,

φg :

if θg = 0, then φg from the prior
if θg 6= 0, then φg from its conditional distribution

τ will be the same as before
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