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Bayesian regression

Bayesian regression

Consider the model
y = Xβ + ε

with
ε ∼ N(0, σ2I)

where

y is a vector of length n
β is an unknown vector of length p
X is a known n × p design matrix
σ2 is an unknown scalar

For a given design matrix X , we are interested in the posterior

p(β, σ2|y),

but we may also be interested in which columns of X should be included, i.e. what
explanatory variables should we keep in the model.
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Bayesian regression Default Bayesian inference

Default Bayesian regression

Assume the standard noninformative prior

p(β, σ2) ∝ 1/σ2

then the posterior is

p(β, σ2|y) = p(β|σ2, y)p(σ2|y)

β|σ2, y ∼ N(β̂MLE , σ
2Vβ)

σ2|y ∼ IG
(
n−p
2 , [n−p]s

2

2

)
β|y ∼ tn−p(β̂MLE , s

2Vβ)

Vβ = (X>X )−1

β̂MLE = VβX
>y

s2 = 1
n−p (y − X β̂MLE )>(y − X β̂MLE )

The posterior is proper if n > p and rank(X ) = p.
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Bayesian regression Cricket chirps

Information about chirps per 15 seconds

Let

Yi is the average number of chirps per 15 seconds and

Xi is the temperature in Fahrenheit.

And we assume
Yi

ind∼ N(β0 + β1Xi , σ
2)

then

β0 is the expected number of chirps at 0 degrees Fahrenheit

β1 is the expected increase in number of chirps (per 15 seconds) for each degree increase
in Fahrenheit.
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Bayesian regression Cricket chirps

Cricket chirps

As an example, consider the relationship between the number of cricket chirps (in 15 seconds)
and temperature (in Fahrenheit). From example in LearnBayes::blinreg.
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Bayesian regression Cricket chirps

Default Bayesian regression

summary(m <- lm(chirps~temp))

##

## Call:

## lm(formula = chirps ~ temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.74107 -0.58123 0.02956 0.58250 1.50608

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.61521 3.14434 -0.196 0.847903

## temp 0.21568 0.03919 5.504 0.000102 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9849 on 13 degrees of freedom

## Multiple R-squared: 0.6997,Adjusted R-squared: 0.6766

## F-statistic: 30.29 on 1 and 13 DF, p-value: 0.0001015

confint(m) # Credible intervals

## 2.5 % 97.5 %

## (Intercept) -7.4081577 6.1777286

## temp 0.1310169 0.3003406
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Bayesian regression Subjective Bayesian inference

Fully conjugate subjective Bayesian inference

If we assume the following normal-inverse-gamma prior,

β|σ2 ∼ N(b0, σ
2B0) σ2 ∼ IG (a, b)

then the posterior is
β|σ2, y ∼ N(bn, σ

2Bn) σ2|y ∼ IG (a′, b′)

with
B−1n = B−10 + 1

σ2X
>X

bn = B−1n

[
B−10 b0 + 1

σ2X
>y
]

a′ = a + n
2

b′ = b + 1
2(y − Xb0)>(XB0X

> + I)−1(y − Xb0)
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Bayesian regression Subjective Bayesian inference

Information about chirps per 15 seconds

Let

Yi is the average number of chirps per 15 seconds and

Xi is the temperature in Fahrenheit.

And we assume
Yi

ind∼ N(β0 + β1Xi , σ
2)

then

β0 is the expected number of chirps at 0 degrees Fahrenheit

β1 is the expected increase in number of chirps (per 15 seconds) for each degree increase
in Fahrenheit.

Perhaps a reasonable prior is p(β0, β1, σ
2) ∝ N(β0; 0, 102)N(β1; 0, 12) 1

σ2 .
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Bayesian regression Subjective Bayesian inference

Subjective Bayesian regression

m = arm::bayesglm(chirps~temp,

prior.mean.for.intercept = 0, # E[\beta_0]
prior.scale.for.intercept = 10, # SD[\beta_0]
prior.df.for.intercept = Inf, # normal prior for \beta_0
prior.mean = 0, # E[\beta_1]
prior.scale = 1, # SD[\beta_1]
prior.df = Inf, # normal prior

scaled = FALSE) # scale prior?
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Bayesian regression Subjective Bayesian inference

Subjective Bayesian regression

summary(m)

##

## Call:

## arm::bayesglm(formula = chirps ~ temp, prior.mean = 0, prior.scale = 1,

## prior.df = Inf, prior.mean.for.intercept = 0, prior.scale.for.intercept = 10,

## prior.df.for.intercept = Inf, scaled = FALSE)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7450 -0.5795 0.0312 0.5846 1.5142

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.53636 2.99849 -0.179 0.861

## temp 0.21470 0.03738 5.743 6.79e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 0.9701008)

##

## Null deviance: 41.993 on 14 degrees of freedom

## Residual deviance: 12.611 on 13 degrees of freedom

## AIC: 45.966

##

## Number of Fisher Scoring iterations: 10
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Bayesian regression Subjective Bayesian inference

Subjective vs Default

tmp = lm(chirps~temp) # default analysis

tmp$coefficients

## (Intercept) temp

## -0.6152146 0.2156787

confint(tmp)

## 2.5 % 97.5 %

## (Intercept) -7.4081577 6.1777286

## temp 0.1310169 0.3003406

m$coefficients # subjective analysis

## (Intercept) temp

## -0.5363623 0.2146971

confint(m)

## 2.5 % 97.5 %

## (Intercept) -6.7792735 5.5475553

## temp 0.1388709 0.2925027
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Bayesian regression Subjective Bayesian inference

Subjective vs Default
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Bayesian regression Subjective Bayesian inference

Shrinkage (as V [β1] gets smaller)
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Bayesian regression Subjective Bayesian inference

Shrinkage (as V [β1] gets smaller)
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Zellner’s g-prior

Zellner’s g-prior

Let
y = Xβ + ε, ε ∼ N(σ2I).

If we choose the conjugate prior β ∼ N(b0, σ
2B0), we still need to choose b0 and B0. It seems

natural to set b0 = 0 which will shrink the estimates for β toward zero, i.e. toward no effect.
But how should we choose B0?

One option is Zellner’s g -prior where B0 = g [X>X ]−1 where g is either set or learned.
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Zellner’s g-prior

Zellner’s g-prior posterior

Suppose
y ∼ N(Xβ, σ2I)

where X is n × p and you use Zellner’s g-prior

β ∼ N(b0, gσ
2(X ′X )−1)

and assume p(σ2) ∝ 1/σ2.

The posterior is then

β|σ2, y ∼ N

(
1

1 + g
b0 +

g

1 + g
β̂MLE ,

σ2g

g + 1
(X ′X )−1

)

Jarad Niemi (Iowa State) Bayesian variable selection September 9, 2021 16 / 26



Zellner’s g-prior

Setting g

In Zellner’s g-prior,
β ∼ N(b0, gσ

2(X ′X )−1), p(σ2) ∝ 1/σ2

we need to determine how to set g.

Here are some thoughts:

g → 0 makes posterior equal to the prior,

g = 1 puts equal weight to prior and likelihood,

g = n means prior has the equivalent weight of 1 observation,

g →∞ recovers a uniform prior,

empirical Bayes estimate of g , ĝEB = argmaxgp(y |g), or

put a prior on g and perform a fully Bayesian analysis.
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Zellner’s g-prior Marginal likelihood

Marginal likelihood

The marginal likelihood under Zellner’s g -prior is

p(y |g) =
Γ( n−1

2 )

π
n−1
2 n1/2

||y − y ||−(n−1) (1+g)
n−p−1

2

(1+g [1−R2])
n−1
2

where R2 is the coefficient of determination.

We use the marginal likelihood as evidence in favor of the model, i.e. when comparing models
those with higher marginal likelihoods should be preferred over the rest.
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Zellner’s g-prior Marginal likelihood

Why the marginal likelihood?

By Bayes’ rule, we have

p(θ|y ,M) = p(y |θ,M)p(θ|M)/p(y |M)

Rearranging yields
p(y |M) = p(y |θ,M)p(θ|M)/p(θ|y ,M)

Taking logarithms yields

log p(y |M) = log(y |θ,M) + log p(θ|M)− log p(θ|y ,M)

To compare with other model selection criterion, multiply by -2 and plug in θ = θ̂MLE :

−2 log p(y |M) = −2 log(y |θ̂MLE ,M) + 2
[
log p(θ̂MLE |y ,M)− log p(θ̂MLE |M)

]
where the penalty is the logarithm of the ratio of the posterior to the prior evaluated at the
MLE.
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Zellner’s g-prior Model selection

Model selection

If β is a vector of length p, let γ be a vector with binary elements that indicate whether that
component of β is non-zero, i.e. that explanatory variable is included. For example,

γ = (1, 0, 1, 1, 0, 0, 0, 1)

indicates that β is of length 8 and that the first, third, fourth, and eighth elements are
non-zero. Then we have Xγ which indicates the design matrix that only has columns
corresponding to those columns in γ that are non-zero and βγ is the subset of β including
elements of β where γ is 1.

Now, we have 2p models Mγ of the form

y = Xγβγ + ε

where ε ∼ N(0, σ2I). Two special cases are

γnull = (0, . . . , 0)
γfull = (1, . . . , 1)
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Zellner’s g-prior Model selection

Model selection (cont.)

If we want to compare Mγ to Mnull using a common g , we can use the Bayes Factor

BF (Mγ : Mnull) =
p(y |Mγ , g)

p(y |Mnull , g)
=

(1 + g)
n−pγ−1

2

(1 + g [1− R2
γ ])

n−1
2

Then, for any two models with a common g , we can compare these models using

BF (Mγ : Mγ′) =
p(y |Mγ , g)

p(y |Mγ′ , g)
=

p(y |Mγ , g)/p(y |Mnull , g)

p(y |Mγ′ , g)/p(y |Mnull , g)
=

BF (Mγ : Mnull)

BF (Mγ′ : Mnull)

If the base model is the null model, then the common parameters amongst the models are σ2

and possibly an intercept α. We can place an improper prior on these parameters, typically
p(α, σ2) ∝ 1/σ2, and not affect the Bayes Factors.
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Zellner’s g-prior Model selection

Zellner’s g-prior in R

library(BMS)

m0 = zlm(chirps~1 , g='UIP') # g=n

m1 = zlm(chirps~scale(temp), g='UIP') # g=n

(bf = exp(m1$marg.lik-m0$marg.lik))

## [1] 438.2629

summary(m1)

## Coefficients

## Exp.Val. St.Dev.

## (Intercept) 16.633333 NA

## scale(temp) 1.358165 0.2839367

##

## Log Marginal Likelihood:

## -20.07976

## g-Prior: UIP

## Shrinkage Factor: 0.938
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Zellner’s g-prior Model selection

Zellner’s g-prior in R

library(bayess)

m = BayesReg(chirps, temp, g=length(chirps)) # explanatory variables are scaled

##

## PostMean PostStError Log10bf EvidAgaH0

## Intercept 16.6333 0.2833

## x1 1.3121 0.2743 2.6417 (****)

##

##

## Posterior Mean of Sigma2: 1.2039

## Posterior StError of Sigma2: 1.7783
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Zellner’s g-prior Model selection

Limiting Bayes Factors

If the base model is the null model, then

BF (Mγ : Mnull) =
(1 + g)(n−pγ−1)/2

(1 + g [1− R2
γ ])(n−1)/2

where pγ is the number of non-zero elements in γ, i.e. the number of explanatory variables
included in the model.

As g →∞, BF (Mγ : Mnull)→ 0. (Lindley’s Paradox)

As n→∞, BF (Mγ : Mnull)→∞.

As R2
γ → 1, BF (Mγ : Mnull)→ (1 + g)(n−pγ−1)/2. (information paradox)

If M∗ is the true model, we would like

BF (M∗ : Mγ)
a.s.−→∞, as n→∞

for any other model Mγ . This is called model selection consistency.
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Zellner’s g-prior Empirical Bayes

Empirical Bayes

The empirical Bayes approach chooses g such that it maximizes p(y |Mγ , g). It turns out that
gEB
γ = max(Fγ − 1, 0), where

Fγ =
R2
γ/pγ

(1− R2
γ )/(n − pγ − 1)

.

Plugging this back into the expression for the Bayes Factor, we find that

BFEB(Mγ : Mnull)→∞

as Rγ → 1 and thus the empirical Bayes approach does not suffer from either paradox. This
empirical Bayes approach is model selection consistent if the true model is not the null model,
but is inconsistent if it is.
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Zellner’s g-prior Fully Bayesian

Fully Bayesian

Alternatively, we can perform a fully Bayes analysis by putting a prior on g . The Zellner-Siow
prior is

g ∼ IG

(
1

2
,
n

2

)
For this prior, we have BFEB(Mγ : Mnull)→∞ as R2

γ → 1 and thus do not suffer from any

paradoxes and we have model selection consistency, i.e. BF (M∗ : Mγ)
a.s.−→∞ for true model

M∗ compared to any other model Mγ .

There are other priors for g that have these properties.
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