Dirichlet process J

Dr. Jarad Niemi

STAT 6150 - lowa State University

November 13, 2025

Jarad Niemi (STAT6150@ISU) Dirichlet process November 13, 2025 1/34



Bayesian density estimation

Bayesian density estimation

There are two main approaches to Bayesian density estimation
@ Dirichlet process and
@ Polya trees

See Miiller and Mitra (2013) for a general overview of all Bayesian

nonparametric problems, e.g. density estimation, clustering, regression,
random effects distributions, etc.
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Bayesian density estimation

Bayesian density estimation through Dirichlet Process

mixtures

Key phrases:
Dirichlet process (DP)

Dirichlet process mixture (DPm)

Stick-breaking representation

Chinese restaurant process
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Bayesian density estimation

Motivation

s>
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Bayesian density estimation

Let Y; come from an unknown probability measure G, i.e.
Yi~g.

As a Bayesian, the natural approach is to put a prior on G. That is, we
want to make prior statements like

P(Y; € A)=G(4A)
and posterior statements like
P (¥ € Aly) = G,(4)

for any set A.
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Bayesian density estimation

Dirichlet process
One approach is to use a Dirichlet process (Ferguson 1973). We write
G ~ DP(aG)

where
@ a > 0 is concentration (or total mass) parameter and
@ G is the base (probability) measure.

For any finite partition A1,..., Ax of the sample space S, the probability
vector [G(A1), ..., G(Ak)] follows this Dirichlet distribution

[Q(Al), ceey Q(AK)] ~ DZT’( [aGo(Al), ey aG()(AK)] )

Thus for any set A in the partition:
e E[G(A)] = Gy(A) and

o Var[g(A)] = GuAlL-ColA)],
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Conjugacy of the Dirichlet process

Assume
ind

Y, ~ G and G ~ DP(aGy)
then for any partition {A1,..., Ak}, we have
[g(Al)v SRR g(AK)”y ~
Dir ([aGo(A1) + 370 Wyi € A1),...,aGo(AKk) + 372, yi € Ak)])

and thus

Gly ~ DP (aGo +) 6 >

i=1
which has

poe = () o+ (5 ) e
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Bayesian density estimation

Stick-breaking representation

If G ~ DP(aG)), then the stick-breaking representation of G is

G(A) = mpdg,(A) =m0y € A)
h=1

h=1

where 7 ~ stick(a) and 0, 4 Go. The stick distribution is the following:

@ Tp = Vp HZ<h(1 — I/g) and

o v, N Be(1,a).

91 ‘ ez

w0
0 1
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Bayesian density estimation

Realizations from a DP

Approximation to stick-representation with 10,000 draws
Base measure is a standard normal (density in red)
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DP mixture

The stick-breaking representation shows that a DP is almost surely
discrete. Any data we model where we use a DP prior on the data
distribution, will result in a discrete distribution for the data. To model
continuous data, we may want to use a DP mixture, i.e.

Y; " p16:), 6, %G, G ~ DP(aGy)

for some parametric model p(-|0).

Using the stick-breaking construction, we have
ind ind
Y Cp(16:), 0 %Y mnder
h=1

where 07 20 Gy and 7 ~ stick(a).
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Bayesian density estimation

Finite approximation to the stick-breaking representation

For some € > 0, there exists an H such that P (>_;° ;; m, <€) ~ 1 and
components beyond H can reasonably be ignored with the remaining
probability given to component H.

Thus, a finite approximation to the stick-breaking representation is

H
ind ind
Y X p(16:), 6D mhde:
h=1

where
o mp =vp[pepn(l —10)

ind

o v, '~ Be(l,a) for h < H, and
e vy =1.
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Recall the RNA-seq example
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Bayesian density estimation Normal example

Normal example

A DP mixture model for the marginal distribution for Y; = ¢Ez is

Y, %d N(,ul, ) ( Hi ) znd Zﬂ'héu U

where ZhH:1 mh = 1.

Alternatively, we can introduce a latent variable (; = h if observation
came from group h. Then

ind
YilG=h ~ N(Hh» “)
G N Cat(H, )

where ¢ ~ Cat(H,) is a categorical random variable with P({ = h) = 3,
forh=1,...,H and 7 = (71,...,7H).
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Bayesian density estimation Normal example

Normal example

Let
d
Y ZLZJ N(//Jh 0-1'2)7 ,U”La Zﬂ-h(s(u O'

where the base measure G is
*

i |os ind N (mp, vios*) and 2 ind ~ IG(cp,dp).

But since each (y;,07) must equal (u},o2*) for some h, we can rewrite
the model as

md 2
Y ZmN Wi o)

with a prior that is equal to the base measure. Thus this model is
equivalent to our finite mixture with the exception of the prior for 7
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i ElGo
MCMC - Blocked Gibbs sampler

The steps of a Gibbs sampler with stationary distribution
p(m, 1,0, Cly) o< p(y[¢, py a?)p(CIm)p(plo®)p(a?)p(r)
has steps

1. Fori=1,...,n, independently sample (; from its full conditional
P& =h|...) o< TN (ys; 15, 02%)
2. Jointly sample 7 and p, 02 because they are conditionally independent.

a. Sample v, % Be(1+ Zp,a+ Z}) for V.=1,...,H — 1 where
Zy, = Z 11(¢; = h) and Z;L Zh, a1 Zh and set vy = 1. Then
calculate 7rh = v [Jpen (1 —wp).

b. Forh=1,...,H, sample ,uh,a% from their full conditional

pilok” W Nl viort) ot W IG(c, dj)

where m/,, v}?, ¢}, and dj, are exactly the same as in the normal finite
mixture MCMC.
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library("rjags")
dp_normal_blocked =
model {
for (i in 1:n) {
y[il ~ dnorm(mulzetalil], taulzetal[ill)
zetal[i] ~ dcat(pill)

}

for (h in 1:H) {
mu[h] ~ dnorm(2,1/3)
taul[h] ~ dgamma(.1,.1)
sigma[h] <- 1/sqrt(taulh])

# Stick breaking
for (h in 1:(H-1)) { V[h] ~ dbeta(i,a) }
V[H] <- 1
pil1] <- V[1]
for (h in 2:H)
pilh] <- V[h] * (1-V[h-1]) * pi[h-1] / V[h-1]

o

tmp = hat[sample(nrow(hat), 1000),]
dat = list(n=nrow(tmp), H=25, y=tmp$phi, a=1)

jm = jags.model(textConnection(dp_normal_blocked), data = dat, n.chains = 3)
r = jags.samples(jm,

variable.names = c('mu','sigma','pi', 'zeta'),

n.iter = 1e3) # up to le4
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Monitor convergence of density

As previously discussed, the model as constructed has identifiability
problems among the 7, p}, and ai* due to label switching. What is
identified in the model is the value of the density at any particular value.

So rather than directly monitoring the parameters, we will monitor the
estimated density, i.e. at iteration m of the MCMC, the estimated density
at location z is

H
Z ﬁ}(Lm)N(x; uz(m), UZ*(m)).
h=1

Monitoring this quantity at a variety of locations x will provide appropriate
convergence assessment.
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Monitor convergence of density
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Monitoring the number of utilized components

Since we are using a finite approximation to the DP, we should monitor
the index of the maximum occupied component (or the number of
occupied clusters). If the finite approximation is reasonable, then this
number will be smaller than H. If not, then H should be increased.

Specifically, at iteration m, we monitor

ma'X{Cfm% R C(m)7 }

n
the index of the maximum occupied cluster, or

H
I(Zh > 0),
h=1

the number of occupied clusters.
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Monitoring the number of utilized components
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Posterior density estimation
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Chinese restaurant process

Rather than utilizing the finite approximation to the DP, we can use the DP
directly, by marginalizing out G. This results in a prior directly on 64,...,0, via

a
9i|01,...,91‘_1w<a+[i_> +Z< 2_1>50j

The conditional prior for 6; is

a 1
- () ol + 2 (cra=t)

or, equivalently,

HED i
0;16_; _* \a (6;) + z L 5
e a+n—1)7"0" atn—1)"%

h=1

where H(~? is the number of components without the ith observation and n\ "

is the number of observations in each component without the ith observation.
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InGs
Marginalized Gibbs sampler

Using this Chinese restaurant process, we have the following n + 1-step
MCMC

1. Fori=1,...,n, sample ¢; from its full conditional
PG = hl sy o i Pl h=1 HD
’ a [ plys;0)dGo(6) h=H) +1

If ¢; = H=) + 1, then sample 0&: from its posterior using y; as the
only observation.

2. For h=1,...,H, sample 0; from their full conditional
Oil... o< Go(6) ] p(wil6)
i:(;=h

i.e. sample the parameters from their posteriors using only the data in
that group.
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Marginalized Gibbs sampler - Normal example

For the normal example, we have this n 4 1-step sampler

1. Fori=1,...,n, sample (; from its full conditional

(1) k2% _ (=)
N(yi;ur,07%) h=1,....H
P(¢& = hl¢i,. .. "h o Oh ;
(¢ ¢ >O<{ atoc(ys;m,v?[d/c]) h=HE) 41

If ¢; = H=") 4 1, then sample KE, s Ua_* from its
normal-inverse-gamma posterior using y; as a the only observation.

2. Forh=1,...,H, sample HhaU;% from their full conditional

pilod ™ N (mi ool oht RIG ()

where mh,vf, ¢}, and d}, are exactly the same as in the normal finite

mixture MCMC.
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Putting a prior on the concentration parameter

If G ~ DP(aG)), then the concentration parameter (a) controls the prior
on the number of clusters. For example, if a = 1, then in the prior two
randomly selected observations have a 0.5 probability of belonging to the
same cluster. As a increases, then you have more clusters and more
concentration around Gg. As a decreases, then you have fewer clusters
and the data are more informative.

Rather than setting the concentration parameter, we can learn it. Let
G ~ DP(aGy) and
a ~ Ga(a,b)

then the full conditional for « is

H-1
al...~Ga (a—kH—l,b—Zlog(l—%)).

h=1
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T s
Multiple groups

Suppose we have Y;; fori =1,...,njand j=1,...,J, i.e. we have J
groups with n; observations per group. We may consider a DP for each
group individually, i.e.

ind

Yi; g, G; "™ DP(a;Gy))

where we must now specify a;; and Gy, for j =1,...,J. More
importantly, this model does not allow us to borrow any information across
the groups since the observations across groups given «; and Go;.

Some possible models to allow borrowing of information are the
e Dependent Dirichlet process (DDP)
e Hierarchical Dirichlet process (HDP)
@ Nested Dirichlet process (NDP)
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Bayesian density estimation Hierarchical dependence

Dependent Dirichlet process

Suppose we are interested in estimating a collection of random probability
measures G1,...,G . We would like for the measures to be DPs
marginally, i.e.
ind
G; '~ DP(a;Goj)

but we may want to incorporate dependency between the measures and
thus borrow information across the measures. One approach is a “fixed-m
DDP" which is defined via the stick-breaking process such that each
measure has the same weights 7 but the locations vary, i.e.

00
d .
gj = E 7Th59;jh, ™~ StICk(Q), Q;h ~ Gy
h=1

Jarad Niemi (STAT6150@ISU) Dirichlet process November 13, 2025 27 /34



Bayesian density estimation Hierarchical dependence

Hierarchical Dirichlet process

An alternative is to build a hierarchical model, i.e.

G; ™' DP(aGo)  Go ~ DP(BGuo)

The stick-breaking process related to this model is

o0 oo
d d
Gi =Y minder, Go=> Mnder, 05~ Goo
h=1 h=1
where

T = (7Tj1,71’j2, .. ) ~ stick(a) and A= ()\1,)\2, .. ) ~ StiCk(ﬁ).

Like the DDP, the HDP allows individuals in different groups to be
clustered together, i.e. have the same 0;.
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Bayesian density estimation Hierarchical dependence

Nested Dirichlet process

Rather than clusting individuals across groups, we may be interested in
clustering groups themselves, i.e. groups that have the same distribution
should be treated as the same group. Here we can use the nested Dirichlet
process:

G; ™G, G~DP(aGy), Go=DP(BGy).

The stick-breaking process related to this model is
j md Gg= Z Thigy, m~ stick(a), G ~ g DP(BGoo).

A natural combination of the HDP and NDP is to place a DP on Gy
which results in common set of global atoms, i.e. 67, but with varying
weights for each cluster.
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Bayesian density estimation Applications

Applications of DP

Primarily we have been discussing the use of the DP prior as a tool for

Bayesian nonparametric density estimation
uses in the context of

@ Random effects
@ Error distributions

@ Functional data analysis
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Bayesian density estimation Applications

Random effects model

Let y;; be the observation for individual 7 in group j and assume

ind ind
Yij = Hj +€ijy py ~ F, e ~ G
A typical parametric model would assume F' < N (5, 72) and G £ N(0,02).

Suppose we would like to be less informative about these distributional
assumptions. One possibility is to assume

F '™ DP(aFy).

Now we will estimate the density for the random effects ;. To estimate F, we
will need many groups, i.e. J should be large. Alternatively (or additionally), we
could assume

cij " N(0,02), o? *'G, G~ DP(BGy).

Here we use the Dirichlet Process mixture to assure that the distribution for the
observations are continuous. To estimate G, we need many observations per

group.
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Bayesian density estimation Applications

Functional data analysis

Let y;; be the observation and x;; be an explanatory variable for individual ¢ in
group j and assume

H
vij = Ji(@i) +eig, fi(@) =Y Oinba(@)
h=1
where by, (x) for h =1,..., H be a collection of basis functions. Now assume

QJ = (9717,97}[) iﬁ./d G7 G~ DP(CYG())

To provide parismony, i.e. dropping basis functions, we can utilize a base measure
that a point-mass mixtures, i.e.

d
Gon = mondo + (1 — mon) N (0, 77,)
If we want t alternatives, let 7, ~ IG(-,-). A conditionally conjugate prior on the
s mop A Be(a,b). If exact zeros are not necessary, then let
« ind d
o~ NO,75), T S ~ IG()
and thus have ¢ distribution for the 7, , but now the MCMC is more efficient.

Jarad Niemi (STAT6150@ISU) Dirichlet process November 13, 2025 32/34



Bayesian density estimation Bayesian nonparametrics in R

Bayesian nonparametrics in R

From CRAN Task View: Bayesian Inference, the packages that contain
Dirichlet process related Bayesian nonparametrics are

@ bayesm

e DPpackage (has been removed)
@ growcurves
o

PReMiuM
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https://cran.r-project.org/web/views/Bayesian.html

Bayesian density estimation Bayesian nonparametrics in R
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