Finite mixture models

Dr. Jarad Niemi

STAT 615 - Iowa State University

November 9, 2021

Categorical distribution

Let $Z \sim Cat(H, p)$ represent a categorical distribution with

• $P(Z = h) = p_h$ for h = 1, ..., H and • $\sum_{h=1}^{H} p_h = 1.$

Example: discrete choice model

Suppose we have a set of H categories and we label these $1, \ldots, H$. Independently, consumers choose one of the H categories with the same probability. Then a reasonable model is $Z_i \stackrel{ind}{\sim} Cat(H, p)$.

Multinomial distribution

If we count the number of times the consumer chose each category, i.e.

$$Y_h = \sum_{i=1}^n \mathbf{I}(Z_i = h),$$

then the result is the multinomial distribution, i.e. $Y \sim Mult(n, p)$. The multinomial distribution has probability mass function

$$p(y; n, p) = \frac{n!}{y_1! \cdots y_H!} \prod_{h=1}^H p_h^{y_h}$$

which has

•
$$E[Y_i] = np_i$$
,
• $V[Y_i] = np_i(1 - p_i)$, and
• $Cov[Y_i, Y_j] = -np_ip_j$ for $(i \neq j)$

A special case is H = 2 which is the binomial distribution.

Dirichlet distribution

The Dirichlet distribution (named after Peter Gustav Lejeune Dirichlet), i.e. $P \sim Dir(a)$, is a probability distribution for a probability vector of length H. The probability density function for the Dirichlet distribution is

$$p(P;a) = \frac{\Gamma(a_1 + \dots + a_H)}{\Gamma(a_1) \cdots \Gamma(a_H)} \prod_{h=1}^H p_h^{a_h - 1}$$

where $p_h \ge 0$, $\sum_{h=1}^{H} p_h = 1$, and concentration parameters $a_h > 0$.

Letting $a_0 = \sum_{h=1}^{H} a_h$, then some moments are • $E[p_h] = \frac{a_h}{a_0}$, • $V[p_h] = \frac{a_h(a_0 - a_h)}{a_0^2(a_0 + 1)}$, • $Cov(p_h, p_k) = -\frac{a_h a_k}{a_0^2(a_0 + 1)}$, and • $mode(p_h) = \frac{a_h - 1}{a_0 - H}$ for $a_h > 1$. A special case is H = 2 which is the beta distribution.

Conjugate prior for multinomial distribution

The Dirichlet distribution is the natural conjugate prior for the multinomial distribution. If

$$Y \sim Mult(n,\pi)$$
 and $\pi \sim Dir(a)$

then

$$\pi | y \sim Dir(a+y).$$

Some possible default priors are

- a = 1 which is the uniform density over π ,
- a = 1/2 is Jeffreys prior for the multinomial,
- $\bullet \ a=1/H \text{, and}$
- a = 0, an improper prior that is uniform on $\log(\pi_h)$. The resulting posterior is proper if $y_h > 0$ for all h.

Complicated distributions

2021 6/27

Finite mixtures

Finite mixture

Finite mixture

A model for the marginal distribution for $Y_i=\hat{\phi}_i$ is

$$Y_i \stackrel{ind}{\sim} \sum_{h=1}^H \pi_h N(\mu_h, \sigma_h^2)$$

where $\sum_{h=1}^{H} \pi_h = 1$.

Alternatively, we can introduce a latent variable $\zeta_i = h$ if observation i came from group h. Then

$$\begin{aligned} Y_i | \zeta_i &= z \quad \stackrel{ind}{\sim} N(\mu_z, \sigma_z^2) \\ \zeta_i \quad \stackrel{ind}{\sim} Cat(H, \pi) \end{aligned}$$

where $\zeta \sim Cat(H, \pi)$ is a categorical random variable with $P(\zeta = h) = \pi_h$ for $h = 1, \ldots, H$ and $\pi = (\pi_1, \ldots, \pi_H)$.

A possible prior

Let's assume

$$\begin{array}{ll} \pi & \sim Dir(a) \\ \mu_{h} | \sigma_{h}^{2} & \stackrel{ind}{\sim} N(m_{h}, v_{h}^{2} \sigma_{h}^{2}) \\ \sigma_{h}^{2} & \stackrel{ind}{\sim} IG(c_{h}, d_{h}) \end{array}$$

and π is independent of $\mu = (\mu_1, \dots, \mu_H)$ and $\sigma^2 = (\sigma_1^2, \dots, \sigma_H^2)$.

Commonly, we have $m_h = m$, $v_h = v$, $c_h = c$, and $d_h = d$. If the data have been standardized (scaled and centered), a reasonable default prior is

- m = 0,
- v = 1,
- c = 2,
- d = 4, (BDA3 pg 535) and
- *a* is 1/*H* (BDA3 pg 536).

MCMC

The steps of a Gibbs sampler with stationary distribution

$$p(\pi, \mu, \sigma^2, \zeta|y) \propto p(y|\zeta, \mu, \sigma^2)p(\zeta|\pi)p(\mu|\sigma^2)p(\sigma^2)p(\pi)$$

has steps

1. For i = 1, ..., n, sample ζ_i from its full conditional (as the ζ are conditionally independent across *i*):

$$P(\zeta_i = h | \ldots) \propto \pi_h N(y_i; \mu_h, \sigma_h^2)$$

2. Jointly sample π and $\mu,\,\sigma^2$ as they are conditionally independent.

- a. Sample $\pi \sim Dir(a + Z)$ where $n = (Z_1, \dots, Z_H)$ and $Z_h = \sum_{i=1}^n I(\zeta_i = h)$.
- b. For h = 1, ..., H, sample μ_h, σ_h^2 from their full conditional (as these are conditionally independent across h):

$$\sigma_h^2 \overset{ind}{\sim} IG(c_h', d_h') \quad \mu_h | \sigma_h^2 \overset{ind}{\sim} N(m_h', v_h'^2 \sigma_h^2)$$

where

$$\begin{array}{ll} v_h'^2 &= (1/v_h^2 + Z_h)^{-1} \\ m_h' &= v_h'^2 (m_h/v_h^2 + Z_h \overline{y}_h) \\ c_h &= c_d + Z_h/2 \\ d_h' &= d_h + \frac{1}{2} \left(\sum_{i:\zeta_i = h} (y_i - \overline{y}_h)^2 + \left(\frac{Z_h}{1 + Z_h/v_h^2} \right) (\overline{y}_h - m_h)^2 \right) \\ \overline{y}_h &= \frac{1}{Z_h} \sum_{i:\zeta_i = h} y_i \end{array}$$

```
JAGS
```

```
library("rjags")
jags_model = "
model {
 for (i in 1:n) {
   y[i] ~ dnorm(mu[zeta[i]], tau[zeta[i]])
   zeta[i] ~ dcat(pi[])
 for (i in 1:H) {
   mu[i] ~ dnorm(0,1e-5)
   tau[i] ~ dgamma(1,1)
    sigma[i] <- 1/sqrt(tau[i])</pre>
 pi ~ ddirich(a)
```

```
tmp = hat[sample(nrow(hat), 1000),]
dat = list(n=nrow(tmp), H=3, y=tmp$phi, a=rep(1,3))
```

```
jm = jags.model(textConnection(jags_model), data = dat, n.chains = 3)
r = coda.samples(jm, c('mu', 'sigma', 'pi'), 1e3)
```

JAGS

Convergence diagnostics

Potential scale reduction factors:

gelman.diag(r)

	##							
	##	Point est. U	Jpper C.I.					
	## mu[1]	99.02	358.12					
	## mu[2]	23.57	49.18					
	## mu[3]	42.49	150.84					
	## pi[1]	18.64	58.20					
	## pi[2]	4.70	8.83					
	## pi[3]	13.38	31.09					
	## sigma[1	l] 18.46	50.98					
	## sigma[2	2] 3.08	5.96					
	## sigma[3	3] 12.75	41.99					
	##							
	## Multiva	## Multivariate psrf						
	##							
	## 102							
	gelman.dia	ag(r, multivar:	iate=FALSE)					
	## Potenti	ial scale redu	ction factors					
	##	tur bouro rouu						
	##	Point est. N	Inner C.I.					
	## mu[1]		358.12					
	## mu[2]		49.18					
	## mu[2]		150.84					
	## pi[1]	18.64						
	## pi[1]	4.70	8.83					
Jarad Niemi (STAT615@ISU)								
	paraa re	(011110101						

Convergence diagnostics (2)

plot(r, density=FALSE)

Jarad Niemi (STAT615@ISU)

Prior distributions

The parameters of the model are unidentified due to label-switching, i.e.

$$Y_i \stackrel{ind}{\sim} \sum_{h=1}^H \pi_h N(\mu_h, \sigma_h^2) \stackrel{d}{=} \sum_{h'=1}^H \pi_{h'} N(\mu_{h'}, \sigma_{h'}^2)$$

for some permutation h'.

One way to resolve this issue is to enforce identifiability in the prior. For example, in one-dimension, we can order the component means: $\mu_1 < \mu_2 < \cdots < \mu_H$.

To ensure the posterior is proper

- Maintain proper prior for π
- Ensure proper prior for ratios of variances (perhaps by ensuring prior is proper for variances themselves)

Jarad Niemi (STAT615@ISU)

JAGS

Two conditionally conjugate prior options

Option 1:

$$Dir(\pi; a)$$
I $(\mu_1 < \dots < \mu_H) \prod_{h=1}^H N(\mu_h; m_h, v_h^2) IG(\sigma_h^2; c_h, d_h)$

Option 2:

$$Dir(\pi; a)$$
I $(\mu_1 < \dots < \mu_H) \prod_{h=1}^H N(\mu_h; m_h, v_h^2 \sigma_h^2) IG(\sigma_h^2; c_h, d_h)$

```
JAGS
```

```
library("rjags")
jags_model = "
model {
  for (i in 1:n) {
    y[i] ~ dnorm(mu[zeta[i]], tau[zeta[i]])
    zeta[i] ~ dcat(pi[])
  for (i in 1:H) {
    mu0[i] ~ dnorm(0,1e-5)
    tau[i] ~ dgamma(1,1)
    sigma[i] <- 1/sqrt(tau[i])</pre>
  mu[1:H] <- sort(mu0)</pre>
  pi ~ ddirich(a)
```

```
jm = jags.model(textConnection(jags_model), data = dat, n.chains = 3)
r = coda.samples(jm, c('mu', 'sigma', 'pi'), 1e3)
```

JAGS

Convergence diagnostics

gelman.diag(r)

Error in chol.default(W): the leading minor of order 6 is not positive definite

```
gelman.diag(r, multivariate=FALSE)
```

```
## Potential scale reduction factors:
##
##
           Point est. Upper C.I.
## mu[1]
                 1.20
                           1.68
## mu[2]
                 1.02
                           1.05
## mu[3]
                 1.00
                       1.01
                 1.10
                        1.30
## pi[1]
## pi[2]
                1.03
                        1.08
## pi[3]
                1.01
                          1.01
## sigma[1]
               1.22
                          1.75
## sigma[2]
               1.02
                          1.06
## sigma[3]
                1.00
                           1.01
```

Convergence diagnostics (2)

plot(r, density=FALSE)

Posterior on data density

Clustering

Group membership

Group membership can be obtained using the ζ_i , e.g.

$$P(ext{gene } i ext{ in cluster } h) = P(\zeta_i = h | y) pprox \sum_{m=1}^M \operatorname{I}\left(\zeta_i^{(m)} = h
ight).$$

##		parameter	p1	p2	pЗ
##	1	zeta[1]	0	0.001000000	0.9990000
##	2	zeta[10]	0	0.001333333	0.9986667
##	3	zeta[100]	0	0.003666667	0.9963333
##	4	zeta[1000]	0	0.007333333	0.9926667
##	5	zeta[101]	0	0.030333333	0.9696667
##	6	zeta[102]	0	0.785000000	0.2150000

Clustering

Genes can then be clustered by assigning them to a group based on their posterior probabilities of group membership, i.e. for gene i, we assign the group according to

$$\operatorname{argmax}_h P(\zeta_i = h | y).$$

Unfortunately clustering is extremely sensitive to the parametric model chosen, e.g. normal in this example, and the cluster could change dramatically with a different choice, e.g. t.

Choosing H

When using finite mixture models one of the key choices is to choose H, the number of clusters.

- A Bayesian approach would place a prior on *H*, e.g. a Poisson or truncated Poisson, and then use reversible jump MCMC to estimate it.
- A more pragmatic approach is to start with a small *H* and then determine whether there is some feature of the data that is not being adequately addressed, e.g. via posterior predictive pvalues.
- An empirical Bayes finds an MLE (or MAP) via

$$\hat{H} = \mathrm{argmax}_{H} p(y|H) = \int p(y|\pi,\mu,\sigma^{2},H) p(\pi,\mu,\sigma^{2}|H) d\pi d\mu d\sigma^{2}$$

and then condition on \hat{H} in the analysis. Typically this MLE (or MAP) is found via the EM algorithm.

Multivariate density estimation

Finite mixture

Finite mixture

A model for the joint distribution for $Y_i = (\phi_i, \psi)^\top$ is

$$Y_i \stackrel{ind}{\sim} \sum_{h=1}^H \pi_h N(\mu_h, \Sigma_h)$$

where $\sum_{h=1}^{H} \pi_h = 1$.

Alternatively, we can introduce a latent variable $\zeta_i = h$ if observation i came from group h. Then

$$\begin{aligned} Y_i | \zeta_i &= z \quad \stackrel{ind}{\sim} N(\mu_z, \Sigma_z) \\ \zeta_i \quad \stackrel{ind}{\sim} Cat(H, \pi) \end{aligned}$$

where $\zeta \sim Cat(H, \pi)$ is a categorical random variable with $P(\zeta = h) = \pi_h$ for $h = 1, \ldots, H$ and $\pi = (\pi_1, \ldots, \pi_H)$.

A possible prior

Let's assume

$$\begin{aligned} \pi &\sim Dir(a) \\ \mu_h | \Sigma_h & \stackrel{ind}{\sim} N_p(m_h, v_h^2 \Sigma_h) \\ \Sigma_h & \stackrel{ind}{\sim} IW(D_h, c_h) \end{aligned}$$

where $c_h > p-1$ is the degrees of freedom and D is the scale matrix. The mean of this distribution is $D_h/(c_h - p - 1)$ for $c_h > p + 1$.

MCMC

The steps of a Gibbs sampler with stationary distribution

$$p(\pi, \mu, \Sigma, \zeta|y) \propto p(y|\zeta, \mu, \Sigma)p(\zeta|\pi)p(\mu|\Sigma)p(\Sigma)p(\pi)$$

has steps

1. For i = 1, ..., n, sample ζ_i from its full conditional

$$P(\zeta_i = h | \ldots) \propto \pi_h N(y_i; \mu_h, \Sigma_h)$$

2. Jointly sample π and μ , σ^2 as they are conditionally independent.

- a. Sample $\pi \sim Dir(a + Z)$ where $Z = (Z_1, \ldots, Z_H)$ and $Z_h = \sum_{i=1}^n I(\zeta_i = h)$. b. For $h = 1, \ldots, H$, sample μ_h, Σ_h from their full conditional

$$\Sigma_h \overset{ind}{\sim} IW(D'_h, c'_h) \quad \mu_h | \Sigma_h \overset{ind}{\sim} N(m'_h, v'^2_h \Sigma_h)$$

where

$$\begin{split} & v_h'^2 &= (1/v_h^2 + Z_h)^{-1} \\ & m_h' &= v_h'^2 (m_h/v_h^2 + Z_h \overline{y}_h) \\ & c_h' &= c_d + Z_h \\ & D_h' &= D_h + \sum_{i:\zeta_i = h} (y_i - \overline{y}_h) (y_i - \overline{y}_h)^\top + \left(\frac{Z_h}{1 + Z_h/v_h^2}\right) (\overline{y}_h - \mu_h) (\overline{y}_h - \mu_h)^\top \\ & \overline{y}_h &= \frac{1}{Z_h} \sum_{i:\zeta_i = h} y_i \end{split}$$

```
Finite mixture
```

```
library("rjags")
joint_mixture_model = "
model {
  for (i in 1:n) {
    y[i,1:p] ~ dmnorm(mu[,zeta[i]], Tau[,,zeta[i]])
    zeta[i] ~ dcat(pi[])
  for (h in 1:H) {
    mu[1:p,h] ~ dmnorm(mu0,Tau[,,h])
    Tau[1:p.1:p.h] ~ dwish(D[,].c)
    Sigma[1:p,1:p,h] <- inverse(Tau[,,h])</pre>
  pi ~ ddirich(a)
```

```
tmp = hat[sample(nrow(hat), 1000),]
dat = list(n=nrow(tmp), y = tmp[,c('phi', 'psi')], p=2, H=10)
dat$a = rep(1/dat$H, dat$H)
dat$D = diag(1, dat$p)
dat = dat +1
dat$mu0 = c(3,0)
```

```
jm = jags.model(textConnection(joint_mixture_model),
                data = dat,
                n.chains = 3)
r = coda.samples(jm, c('pi', 'mu', 'Sigma'), 1e3)
```