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Bayesian nonparametrics

Bayesian nonparametrics

There are two main approaches to Bayesian nonparametrics for density
estimation

@ Dirichlet process and
@ Polya trees

See Miiller and Mitra (2013) for a general overview of all Bayesian
nonparametric problems, e.g. density estimation, clustering, regression,
random effects distributions, etc.
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Motivation
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Goal

Let Y; come from an unknown probability measure G, i.e. Y; ~ G. As a
Bayesian, the natural approach is to put a prior on G. That is, we want to

make statements like
P(Y; € A) =G(4)

for any set A.
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Bayesian nonparametrics

Dirichlet process

One approach is to use a Dirichlet process (Ferguson 1973). We write
G ~ DP(aGo)
where

@ a > 0 is concentration (or total mass) parameter and

@ (g is the base measure, i.e. a probability distribution defined on the
support of G.

For any partition Ay,..., Ax of the sample space S, the probability vector
[G(A1),...,G(AKk)] follows a Dirichlet distribution, i.e.

[Q(Al), .. ,Q(AK)] ~ Dir([aGo(Al), ce ,GG()(GK)]).
Thus
e E[G(A1)] = Go(A1) and

o Var[G(A1)] = —GO(Al)i__aGO(Al)].
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Conjugacy of the Dirichlet process

Assume
ind

Y, ~ G and G ~ DP(aGy)
then for any partition {A1,..., Ak}, we have
[g(Al)v SRR g(AK)”y ~
Dir ([aGo(A1) + 370 Wyi € A1),...,aGo(AKk) + 372, yi € Ak)])

and thus

Gly ~ DP (aGo +) 6 >

=1
which has
a "1
EIG(A)|y] = G I(y; € A)
[G(A)ly] a+n o(4) a+n ;n vi
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Bayesian nonparametrics

Stick-breaking representation

A constructive representation of the Dirichlet process is the stick-breaking
representation. Assume G ~ DP(aG)), then

G()=>_ mnda, ()
h=1

where 7 ~ stick(a) and 6, " G. The stick distribution is the following:
@ Th = UV H£<h(1 — I/g) and

° ind Be(1,a).

) TG Ty

0 us

1

Jarad Niemi (STAT615@ISU) Bayesian nonparametrics December 5, 2017 7 /34



Realizations from a DP

Base measure is a standard normal. Realizations are across the columns
and values for a are down the rows.
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DP mixture

If we have an absolutely continuous distribution we are trying to

approximate, then a DP is not reasonable. Thus, we may want to use a
DP mixture, i.e.

Y; " p16:), 6, %G, G ~ DP(aGo)

for some parametric model p(-|0).
Alternatively, if we use the stick-breaking construction, we have

ind ind >
Y Xp(16:),  0; %Y mder
=1
where 0} " Gy and 7~ stick(a).
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Bayesian nonparametrics

Finite approximation to the stick-breaking representation

For some € > 0, there exists an H such that ;7 , 7, < € and

components H and beyond can reasonably be ignored. The resulting
model is

H
ind ind
Y p16:), 0~ mhde:
h=1
where

@ 7T = VhHZ<h(1 - I/g)

° v, nd Be(1,a) for h < H, and
o vy =1.
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Bayesian nonparametrics Normal example

Normal example

A DP mixture model for the marginal distribution for Y; = ¢; is

H
d i
VNGl ()~ 3wl
¢ h=1
where ZhH:1 = 1.

Alternatively, we can introduce a latent variable (; = h if observation
came from group h. Then

ind
YilG=h ~ N(Hh» “)
G N Cat(H, )

where ¢ ~ Cat(H,) is a categorical random variable with P({ = h) = 3,
forh=1,...,H and 7 = (71,...,7H).
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Bayesian nonparametrics Normal example

Normal example

Let
d
Y ZLZJ N(//Jh 0-1'2)7 ,U”La Zﬂ-h(s(u O'

where the base measure G is

*

i |os ind N (mp, vios*) and 2 ind ~ IG(cp,dp).

But since each (y;,07) must equal (u},o2*) for some h, we can rewrite
the model as

md 2
Y ZmN Wi o)

with a prior that is equal to the base measure. Thus this model is
equivalent to our finite mixture with the exception of the prior for 7
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i ElGo
MCMC - Blocked Gibbs sampler

The steps of a Gibbs sampler with stationary distribution

p(m, 11,02, Cly) o< p(y|¢, p 02)p(C|m)p(plo®)p(o®)p(r)
has steps
1. Fori=1,...,n, independently sample ¢; from its full conditional
P(Ci = h|...) o< Tn N (ys; i, o5°)
2. Jointly sample 7 and i, 02 because they are conditionally independent.

ind

a. Sample v, '~ Be(1+ Zy,a+ Z;7) for V.=1,...,H — 1 where
Zp =30 LG =h)and Z} =37 _,. | Ziy and set vy = 1. Then
calculate 7, = vp, [ [, (1 — ve).

b. For h=1,...,H, sample p, 07 from their full conditional

pilo" % Nomj, uol) b W IG(, )

where m/,,v}?, ¢}, and dj, are exactly the same as in the normal finite
mixture MCMC.
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library("rjags")
dp_normal_blocked = '
model {
for (i in 1:n) {
y[il ~ dnorm(mulzetalil], taulzeta[ill)
zeta[i] ~ dcat(pill)

}

for (h in 1:H) {
mu[h] ~ dnorm(2,1/3)
taulh] ~ dgamma(.1,.1)
sigmalh] <- 1/sqrt(taulh])

# Stick breaking
for (h in 1:(H-1)) { V[h] ~ dbeta(l,a) }
V[H] <- 1
pil1] <- V[1]
for (h in 2:H) {
pilh] <= V[h] * (1-V[h-1]) * pi[h-1] / V[h-1]
}
}YI

tmp = hat[sample(nrow(hat), 1000),]
dat = list(n=nrow(tmp), H=25, y=tmp$phi, a=1)

jm = jags.model (textConnection(dp_normal_blocked), data = dat, n.chains = 3)
r = jags.samples(jm, c('mu','sigma','pi','zeta'), 1e3)
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Bayesian nonparametrics [EJAES]

Monitor convergence of density

As previously discussed, the model as constructed as identifiability
problems among the 7, p}, and ai* due to label switching. What is
identified in the model is the value of the density at any particular value.

So rather than directly monitoring the parameters, we will monitor the
estimated density, i.e. at iteration m of the MCMC, the estimated density
at location z is

H
Z ﬁ}(Lm)N(x; uz(m), UZ*(m)).
h=1

Monitoring this quantity at a variety of locations x will provide appropriate
convergence assessment.
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Monitor convergence of density
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Bayesian nonparametrics [EJAES]

Monitoring the number of utilized components

Since we are using a finite approximation to the DP, we should monitor
the index of the maximum occupied component (or the number of
occupied clusters). If the finite approximation is reasonable, then this
number will be smaller than H. If not, then H should be increased.

Specifically, at iteration m, we monitor

ma'X{Cfm% R C(m)7 }

n
the index of the maximum occupied cluster, or

H
I(Zh > 0),
h=1

the number of occupied clusters.
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Bayesian nonparametrics [EJAYES]

Monitoring the number of utilized components
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Bayesian nonparametrics [EJAYES]

Posterior density estimation

~
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Bayesian nonparametrics [EJAES]

Chinese restaurant process

Rather than utilizing the finite approximation to the DP, we can use the DP

directly, by marginalizing out G. This results in a prior directly on 64,...,0, via
a = 1
0;101,...,0i-1 ~ | ———— ) Go(0; — | do.
|01 1 <a+l_1) of )+;<a+z_1> 0;

The conditional prior for 6; is

a 1
0;10_; ~ (a—l—n—l) Go(0;) + ; (a—i—n—l) de,

or, equivalently,

HED .
0;16_; _* \a (6;) + z L 5
e a+n—1)7"0" atn—1)"%

h=1

where H(~? is the number of components without i and n{~" is the number of

observations in each component without 3.
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InGs
Marginalized Gibbs sampler

Using this Chinese restaurant process, we have the following n + 1-step
MCMC

1. Fori=1,...,n, sample (; from its full conditional
(_i) . * o (—7,)
P(G = h|¢_,. .. ny, ' p(yil6}) h—l,....,H
(Gi=hl¢i,...) o { N T

If ¢; = H=) + 1, then sample 0&: from its posterior using y; as the
only observation.

2. For h=1,..., H, sample 6; from their full conditional
Oil... o< Go(0;) 1 p(wil6;)
:(;=h

i.e. sample the parameters from their posteriors using only the data in
that group.
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Bayesian nonparametrics [EJAES]

Marginalized Gibbs sampler - Normal example

For the normal example, we have this n 4 1-step sampler
1. Fori=1,...,n, sample (; from its full conditional

P(Ci:hKfi )o( ngz )N(yu,uhy 2*) h:1,,,.‘7H(*i)
’ atoe(ysm, v2[d)d) h=HCD 41

If ¢; = HY 4+ 1, then sample ,uC , * * from its
normal-inverse-gamma posterior usmg y; as a the only observation.

2. Forh=1,...,H, sample uh,a,% from their full conditional

wilod "N (b, v2or)  or M IG(c,, )

where mh,vf,ch, and d), are exactly the same as in the normal finite

mixture MCMC.
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Bayesian nonparametrics [EJAES]

Putting a prior on the concentration parameter

If G ~ DP(aG)), then the concentration parameter (a) controls the prior
on the number of clusters. For example, if a = 1, then in the prior two
randomly selected observations have a 0.5 probability of belonging to the
same cluster. As a increases, then you have more clusters and more
concentration around Gg. As a decreases, then you have fewer clusters
and the data are more informative.

Rather than setting the concentration parameter, we can learn it. Let
G ~ DP(aGy) and
a ~ Ga(a,b)

then the full conditional for « is

H-1
al...~Ga (a—kH—l,b—Zlog(l—%)).

h=1
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T s
Multiple groups

Suppose we have Y;; fori =1,...,njand j=1,...,J, i.e. we have J
groups with n; observations per group. We may consider a DP for each
group individually, i.e.

ind ind

Yij ~ Gj, G; ~ DP(a;Goj)

where we must now specify a;; and Gy, for j =1,...,J. More
importantly, this model does not allow us to borrow any information across
the groups since the observations across groups given «; and Go;.

Some possible models to allow borrowing of information are the
e Dependent Dirichlet process (DDP)
e Hierarchical Dirichlet process (HDP)
@ Nested Dirichlet process (NDP)
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Bayesian nonparametrics Hierarchical dependence

Dependent Dirichlet process

Suppose we are interested in estimating a collection of random probability
measures G1,...,G . We would like for the measures to be DPs
marginally, i.e.
ind
G; '~ DP(a;Goj)

but we may want to incorporate dependency between the measures and
thus borrow information across the measures. One approach is a “fixed-m
DDP" which is defined via the stick-breaking process such that each
measure has the same weights 7 but the locations vary, i.e.

00
d .
gj = E 7Th59;jh, ™~ StICk(Q), Q;h ~ Gy
h=1
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Bayesian nonparametrics Hierarchical dependence

Hierarchical Dirichlet process

An alternative is to build a hierarchical model, i.e.

G; ™' DP(aGo)  Go ~ DP(BGuo)

The stick-breaking process related to this model is

o0 oo
d d
Gi =Y minder, Go=> Mnder, 05~ Goo
h=1 h=1
where

T = (7Tj1,71’j2, .. ) ~ stick(a) and A= ()\1,)\2, .. ) ~ StiCk(ﬁ).

Like the DDP, the HDP allows individuals in different groups to be
clustered together, i.e. have the same 0;.
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Bayesian nonparametrics Hierarchical dependence

Nested Dirichlet process

Rather than clusting individuals across groups, we may be interested in
clustering groups themselves, i.e. groups that have the same distribution
should be treated as the same group. Here we can use the nested Dirichlet
process:

G; ™G, G~DP(aGy), Go=DP(BGy).

The stick-breaking process related to this model is
j md Gg= Z Thigy, m~ stick(a), G ~ g DP(BGoo).

A natural combination of the HDP and NDP is to place a DP on Gy
which results in common set of global atoms, i.e. 67, but with varying
weights for each cluster.
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Applications
Applications of DP

Primarily we have been discussing the use of the DP prior as a tool for
Bayesian nonparametric density estimation. Here we discuss additional
uses in the context of

@ Random effects
@ Error distributions

@ Functional data analysis
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Bayesian nonparametrics [EANSJslIIeEIilelH

Random effects model

Let y;; be the observation for individual 7 in group j and assume

ind ind
Yij = Hj +€ijy py ~ F, e ~ G
A typical parametric model would assume F' < N (5, 72) and G £ N(0,02).

Suppose we would like to be less informative about these distributional
assumptions. One possibility is to assume

F '™ DP(aFy).

Now we will estimate the density for the random effects ;. To estimate F, we
will need many groups, i.e. J should be large. Alternatively (or additionally), we
could assume

cij " N(0,02), o? *'G, G~ DP(BGy).

Here we use the Dirichlet Process mixture to assure that the distribution for the
observations are continuous. To estimate G, we need many observations per
group.
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Bayesian nonparametrics [EANSJslIIeEIilelH

Functional data analysis

Let y;; be the observation and x;; be an explanatory variable for individual ¢ in
group j and assume

H
vij = Ji(@i) +eig, fi(@) =Y Oinba(@)
h=1
where by, (x) for h =1,..., H be a collection of basis functions. Now assume

QJ = (9717,97}[) iﬁ./d G7 G~ DP(CYG())

To provide parismony, i.e. dropping basis functions, we can utilize a base measure
that a point-mass mixtures, i.e.

Gon £ mondo + (1 — o) N (0, 77)
If we want t alternatives, let 7, ~ IG(-,-). A conditionally conjugate prior on the
s mop A Be(a,b). If exact zeros are not necessary, then let
o MNO,75), 7 TG
and thus have ¢ distribution for the 7, , but now the MCMC is more efficient.
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Bayesian nonparametrics Bayesian nonparametrics in R

Bayesian nonparametrics in R

From CRAN Task View: Bayesian Inference, the packages that contain
Dirichlet process related Bayesian nonparametrics are

@ bayesm

o DPpackage
@ growcurves
o PReMiuM
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https://cran.r-project.org/web/views/Bayesian.html

Bl ensalalt
Density estimation in the DPpackage

library("DPpackage")
prior = list(alpha=1,

ml = 2,
k0 = 1/3,
nul = 0.2,

psiinvi=diag(0.2,1))
mcme = list(nburn=1000, nsave=10000, nskip=10, ndisplay=100)
state = NULL
dp = DPdensity(y = hat$phi,
prior = prior,
mcmc = mcmc,

state=state,
status=TRUE)
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Bl ensalalt
Density estimation in the DPpackage

?DP1mm
?DPglmm
?DPM1mm
?PMglmm
?DPolmm
7HDPMdensity

?PTdensity
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Bayesian nonparametrics Bayesian nonparametrics in R

References

e Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 209-230.

e Neal, R. M. (2000). Markov Chain sampling methods for Dirichlet
process mixture models. Journal of Computational and Graphical
Statistics, 9: 249-265.

e Miiller, P., and Mitra, R. (2013). Bayesian nonparametric
inferencewhy and how. Bayesian Analysis, 8(2).

Jarad Niemi (STAT615@ISU) Bayesian nonparametrics December 5, 2017 34 / 34



	Bayesian nonparametrics
	Normal example
	JAGS
	Hierarchical dependence
	Applications
	Bayesian nonparametrics in R


