
State-space models
Hidden Markov models

Dr. Jarad Niemi

Iowa State University

September 20, 2017

Jarad Niemi (Iowa State) State-space models September 20, 2017 1 / 24



General state space models Structure, notation, and terminology

Structure

Observation equation:
Yt = ft(θt, vt) Yt ∼ pt(yt|θt, . . . )

State transition (evolution) equation:
θt = gt(θt−1, wt) θt ∼ pt(θt|θt−1, . . .)

  

θt-1 θt θt+1

Yt-1 Yt Yt+1
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General state space models Structure, notation, and terminology

Notation and terminology

Observation equation: Yt = ft(θt, vt)
Observations: Yt
Observation (measurement) error: vt

State transition (evolution) equation: θt = gt(θt−1, wt)
Latent (unobserved) state: θt
Evolution noise wt
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General state space models Examples

Stochastic volatility

yt ∼ N(0, σ2t )

log σt ∼ N(µ+ φ[log σt−1 − µ],W )
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General state space models Examples

Stochastic volatility

yt ∼ N(0, σ2t )

log σt ∼ N(µ+ φ(log σt−1 − µ),W )
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General state space models Examples

Markov switching model

yt ∼ N(θt, σ
2)

θt ∼ pδθt−1 + (1− p)δ1−θt−1

θ0 = 0
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General state space models Examples

Markov switching model

yt ∼ N(θt, σ
2)

θt ∼ pδθt−1 + (1− p)δ1−θt−1

θ0 = 0
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General state space models Inferential goals

Goals:

Filtering

Smoothing

Forecasting
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General state space models Inferential goals

What do we know?

p(yt|θt) for all t

p(θt|θt−1) for all t

p(θ0)

In principle, we could have subscripts for the distributions/densities, e.g.

pt(yt|θt) for all t

pt(θt|θt−1) for all t

to indicate that the form of the distribution/density has changed. But,
most in most models the form stays the same and only the state changes
with time.

For simplicity, we will assume a time-homogeneous process and therefore
remove the subscript.
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General state space models Inferential goals

Filtering
Goal: p(θt|y1:t) where y1:t = (y1, y2, . . . , yt) (filtered distribution)

Recursive procedure:
Assume p(θt−1|y1:t−1)

Prior for θt

p(θt|y1:t−1) =

∫
p(θt, θt−1|y1:t−1)dθt−1

=

∫
p(θt|θt−1, y1:t−1)p(θt−1|y1:t−1)dθt−1

=

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1

One-step ahead predictive distribution for yt

p(yt|y1:t−1) =

∫
p(yt, θt|y1:t−1)dθt

=

∫
p(yt|θt, y1:t−1)p(θt|y1:t−1)dθt

=

∫
p(yt|θt)p(θt|y1:t−1)dθt

Filtered distribution for θt

p(θt|y1:t) =
p(yt|θt, y1:t−1)p(θt|y1:t−1)

p(yt|y1:t−1)
=
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
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General state space models Inferential goals

What do we know now?

p(yt|θt) for all t

p(θt|θt−1) for all t

p(θ0)

p(θt|y1:t−1) for all t

p(yt|y1:t−1) for all t
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General state space models Inferential goals

Smoothing

Goal: p(θt|y1:T ) for t < T

Backward transition probability p(θt|θt+1, y1:t)

p(θt|θt+1, y1:T ) = p(θt|θt+1, y1:t)

=
p(θt+1|θt, y1:t)p(θt|y1:t)

p(θt+1|y1:t)

=
p(θt+1|θt)p(θt|y1:t)

p(θt+1|y1:t)

Recursive smoothing distributions p(θt|y1:T ) starting from p(θT |y1:T )

p(θt|y1:T ) =

∫
p(θt, θt+1|y1:T )dθt+1

=

∫
p(θt+1|y1:T )p(θt|θt+1, y1:T )dθt+1

=

∫
p(θt+1|y1:T )

p(θt+1|θt)p(θt|y1:t)
p(θt+1|y1:t)

dθt+1

= p(θt|y1:t)
∫

p(θt+1|θt)
p(θt+1|y1:t)

p(θt+1|y1:T )dθt+1
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General state space models Inferential goals

Forecasting

Goal: p(yt+k, θt+k|y1:t)

p(yt+k, θt+k|y1:t) = p(yt+k|θt+k)p(θt+k|y1:t)

Recursively, given p(θt+(k−1)|y1:t)

p(θt+k|y1:t) =

∫
p(θt+k, θt+(k−1)|y1:t) dθt+(k−1)

=

∫
p(θt+k|θt+(k−1), y1:t)p(θt+(k−1)|y1:t)dθt+(k−1)

=

∫
p(θt+k|θt+(k−1))p(θt+(k−1)|y1:t)dθt+(k−1)
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General state space models Inferential goals

Filtering in a Markov switching model

yt ∼ N(θt, σ
2
)

θt ∼ pδθt−1
+ (1− p)δ1−θt−1

θ0 = 0

Note: p(θt = 1) = 1− p(θt = 0) for all t
Suppose q = p(θt−1 = 1|y1:t−1). What is p(θt = 1|y1:t−1)?

p(θt = 1|y1:t−1) =
1∑
k=0

p(θt = 1|θt−1 = k)p(θt−1 = k|y1:t−1) = (1− p)(1− q) + pq = p1

What is p(θt = 1|y1:t−1)?

p(θt = 0|y1:t−1) =
1∑
k=0

p(θt = 0|θt−1 = k)p(θt−1 = k|y1:t−1) = p(1− q) + (1− p)q = p0

What is p(yt|y1:t−1)?

p(yt|y1:t−1) =
1∑
k=0

p(yt|θt = k)p(θt = k|y1:t−1) = p0N(yt; 0, σ
2
) + p1N(yt; 1, σ

2
)

What is p(θt = 1|y1:t)?

p(θt = 1|y1:t) =
p(yt|θt = 1)p(θt = 1|y1:t−1)

p(yt|y1:t−1)
=

p1N(yt; 1, σ
2)

p0N(yt; 0, σ2) + p1N(yt; 1, σ2)
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General state space models Inferential goals

Hidden Markov model

Definition

A hidden Markov model (HMM) is a state-space model whose state is
finite.

(Note: this is not a universal definition.)

So let

πt
′
t be the probability distribution for the state at time t given

information up to time t′, e.g. πt
′
t,i = P (θt = i|y1:t′).

P be the transition probability matrix, e.g. Pij is the probability of
moving from state i to state j in 1 time step.

p(yt|θt) be the observation density or mass function.
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General state space models Inferential goals

Inference in a hidden Markov model

Assume π0
0 is given.

What is forecast distribution at time t given only π0
0 , i.e. π0

t ? Recursively,
we have

π0
t = π0

t−1P.

Alternatively, we have

π0
t = π0P

t P t = P t−1P and P 1 = P

What is the filtered distribution at time t, i.e. πt
t,i? Find this recursively via

πt
t,i ∝ p(yt|θt = i)πt−1

t−1 · P·,i

Although smoothing can be useful, it is often of more use in Bayesian analyses to
perform backward sampling.
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General state space models Inferential goals

Joint posterior

The joint distribution for θ = (θ0, θ1, . . . , θT ) can be decomposed as

p(θ|y) = p(θ0, θ1, . . . , θT |y1:T )

= p(θT |y1:T )
∏1
t=T p(θt−1|θt, y1:T )

= p(θT |y1:T )
∏1
t=T p(θt−1|θt, y1:t−1)

where
p(θt−1|θt, y1:t−1) = p(θt|θt−1,y1:t−1)p(θt−1|y1:t−1)

p(θt|y1:t−1)

= p(θt|θt−1)p(θt−1|y1:t−1)
p(θt|y1:t−1)

∝ p(θt|θt−1)p(θt−1|y1:t−1)
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General state space models Inferential goals

Backward sampling

The joint distribution for θ can be decomposed as

p(θ|y) = p(θT |y1:T )

T∏
t=1

p(θt−1|θt, y1:t−1)

and
p(θt−1|θt, y1:t−1) ∝ p(θt|θt−1)p(θt−1|y1:t−1).

Suppose we have all the filtered distributions, i.e. πtt for t = 0, . . . , T .

An algorithm to obtain a joint sample for θ is

1. Sample θT ∼ p(θT |y1:T ) which is a discrete distribution with
P (θT = i|y1:T ) = πTT,i.

2. For t = T, . . . , 1, sample θt−1 from a discrete distribution with

P (θt−1 = i|θt, y1:t−1) ∝ Pi,θtπT−1T−1,i =
Pi,θtπ

T−1
T−1,i∑S

i′=1 Pi′,θtπ
T−1
T−1,i′

.
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General state space models Markov model

Markov model

Consider a Markov model where the states are observed directly, but the
transition probability matrix Ψ is unknown. If the sequence of states are
y1:t = (y1, . . . , yt), we are interested in the posterior

p(Ψ|y1:t).

Since this is a row stochastic matrix Ψ, we have

S∑
j=1

Ψij = 1 ∀ i.

So what priors are reasonable for Ψ?
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General state space models Markov model

Priors for row stochastic matrices

One option is a set of independent Dirichlet distributions for each row, i.e.
let Ψi· be the ith row of Ψ, then

Ψi· ∼ Dir(Ai)

where Ai is a vector of length S and A is the matrix with rows Ai.

Do we want more structure here?

sparsity (many zero elements)

similarity between rows
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General state space models Markov model

Dirichlet distribution

The Dirichlet distribution (named after Peter Gustav Lejeune Dirichlet),
i.e. P ∼ Dir(a), is a probability distribution for a probability vector of
length H. The probability density function for the Dirichlet distribution is

p(P ; a) =
Γ(a1 + · · ·+ aH)

Γ(a1) · · ·Γ(aH)

H∏
h=1

pah−1h

where ph ≥ 0,
∑H

h=1 ph = 1, and ah > 0.

Letting a0 =
∑H

h=1 ah, then some moments are

E[ph] = ah
a0

,

V [ph] = ah(a0−ah)
a20(a0+1)

,

Cov(ph, pk) = − ahak
a20(a0+1)

, and

mode(ph) = ah−1
a0−H for ah > 1.

A special case is H = 2 which is the beta distribution.
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General state space models Conjugate prior for multinomial distribution

Conjugate prior for multinomial distribution

The Dirichlet distribution is the natural conjugate prior for the multinomial
distribution. If

Y ∼Mult(n, π) and π ∼ Dir(a)

then
π|y ∼ Dir(a+ y).

Some possible default priors are

a = 1 which is the uniform density over π,

a = 1/2 is Jeffreys prior for the multinomial,

a = 1/S and

a = 0, an improper prior that is uniform on log(πh). The resulting
posterior is proper if yh > 0 for all h.
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General state space models Conjugate prior for multinomial distribution

Dirichlet priors for Markov models

Let A be the hyperparameter with rows Ai such that

Ψi
ind∼ Dir(Ai)

and C be the count matrix of observed transitions, i.e. Ci is the count
vector of transitions from i to all states and Cij is the count of transitions
from i to j.

The posterior distribution p(Ψ|yt) is fully conjugate with A′ = A+C such
that

Ψi|y
ind∼ Dir(A′i)

d
= Dir(Ai + Ci)

where A′i is the ith row of A′.
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General state space models Conjugate prior for multinomial distribution

Inference for HMM with unknown transition matrix Ψ

Suppose we have a HMM with unknown transition matrix Ψ. How can we
perform posterior inference?

If we assume Ψi
ind∼ Dir(A), then a Gibbs sampling approach is

1. Sample θ1:t|Ψ, y ∼
∏T
t=1 p(θt−1|θt, y1:t,Ψ).

2. For i = 1, . . . , S, sample Ψi|θ, y
ind∼ Dir(Ai + Ci) where Ci is the

count vector of transitions from i to all states.
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