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General state space models Structure, notation, and terminology

Structure

Observation equation:
Y = fi(0,ve) Y~ pe(yel0,..)

State transition (evolution) equation:
0r = gi(Or—1,wy) O ~ pi(64]0p—1,...)
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General state space models Structure, notation, and terminology

Notation and terminology

Observation equation:
Observations:
Observation (measurement) error:

State transition (evolution) equation:

Y; = fi(0r, v1)
Y:
Ut

0; = gt(et—la wt)

Latent (unobserved) state: 0,
Evolution noise Wi
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Examples
Stochastic volatility

Y~ N(an-tz)
logoy ~ N(u+@llogor—1 —pl, W)

phi=0.95, W =0.1"2

Returns
-2 2 4 6
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Examples
Stochastic volatility

Yo~ N(an-?)
logoy ~ N(u+¢(logor—1 —p), W)

phi=0.8, W=0.2"2

Returns
-2 2 4 6

0 200 400 600 800 1000

Index

Volatility
00 05 1.0 15 20
L

T T T T T T
0 200 400 600 800 1000

Index
Jarad Niemi (lowa State) State-space models September 20, 2017 5/ 24



General state space models Examples

Markov switching model

Yt
0y
o

~

N(Qt, 0'2)
p59t71 + (1 - p)51—9t71
0

p=0.99, sigma=0.1
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General state space models Examples

Markov switching model
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General state space models Inferential goals

Goals:

o Filtering
@ Smoothing

@ Forecasting

Jarad Niemi (lowa State) State-space models September 20, 2017 8 /24



Inferential goals
What do we know?

o p(y|6;) for all ¢
4 p(etwt—l) for all t
e p(bo)

In principle, we could have subscripts for the distributions/densities, e.g.
® pi(yt|0y) for all ¢
® py(0¢|0:—1) for all ¢

to indicate that the form of the distribution/density has changed. But,
most in most models the form stays the same and only the state changes
with time.

For simplicity, we will assume a time-homogeneous process and therefore
remove the subscript.
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ek
Filtering

Goal: p(0¢|y1:+) where y1.¢+ = (y1,v2,-..,yt) (filtered distribution)
Recursive procedure:
@ Assume p(04_1]y1:¢—1)
@ Prior for 6
p(O¢ly1:ie—1) = /P(Gtx Or—1ly1:e—1)dO¢ 1
= /P(et‘et—lyyl:t—l)p(etfl‘yl:tfl)detfl

= /P(Qt\9t71)P(9t71|y1;t71)d9t71

@ One-step ahead predictive distribution for y¢

p(ytly1:ie—1) = /P(Utﬁgdyl:t—l)det

/ P(yt]0t, y1:4—1)P(O¢ |y1.6—1)dO¢

/p<yt\ot>p(9t|y1;t71>det

@ Filtered distribution for 6

P(yl0t, y1:6—1)POtly1:e—1)  p(ye|04)p(O¢ly1:e—1)
p(0tly1:t) = =
p(yelyr:e—1) p(ytly1:e—1)
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General state space models Inferential goals

What do we know now?

@ p(y:|6;) for all ¢

@ p(0:]0;—1) for all t
° p(bo)

® p(0¢|y14—1) for all ¢
® p(yt|ly1.4—1) for all ¢
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General state space models Inferential goals

Smoothing

Goal: p(b¢|y1.7) fort < T

@ Backward transition probability p(6¢[6¢4+1, y1:¢)

p(0t0tr1,y1.:7) = p(Ot]Otq1,y1:t)

@ Recursive smoothing distributions p(0|y1.7) starting from p(01 |y1.7)

p(0tly1.T)

Jarad Niemi (lowa State)

POt +110t, y1:4)P(0t|y1:e)

P(0t411y1:¢)

P(0t4110¢)p(0¢|y1:t)

P(Ot411y1:¢)

/P(Gt,9t+1\yl;T)d9t+1

/P(9t+1|y1:T)p(Qi|9t+11yl:T)d9t+1

/P(9t+1|y1:T)
P(O¢y1lyi:e)

State-space models

P(04+110¢)p(0¢|y1:t)
P(Ot411y1:t)

POty [ D010

Oy

P(0t+1ly1.7)d0¢ 41
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General state space models Inferential goals

Forecasting

Goal: p(Yesk, Ot lyr:e)

p(yt+k7 9t+k |y1:t) = p(yt+k |9t+k)p(9t+k Iyu)

Recursively, given p(04(x—1)|y1:t)

p(Oryrlyie) = /p(6t+k,9t+(k—l)|y1:t)d0t+(k—l)

/p(9t+k\9t+(k—1),yl:t)P(9t+(k—1>|y1:t)d9t+(k—1)

/p(9t+k ‘9t+(k71))p(9t+(k—l) |y1:t)d0t+(k71)
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Filtering in a Markov switching model

2
yt ~ N(0¢07)
01

2

pdg, _, + (1 —p)d1_g, ,
6 = O

Note: p(6 = 1) =1 — p(6y = 0) forall t
Suppose ¢ = p(0r—1 = 1|y1.¢—1). Whatis p(6¢ = 1|y1.¢—1)?

1

p(0s = 1ly1e—1) = D p(0r = 110, _1 = k)p(04—1 = kly1:4—1) = (1 —p)(1 — q) + pg = P1
k=0

@ Whatis p(0¢ = 1|y1.¢—1)7?

1
p(0r =O0ly1:e—1) = D p(0r = 0[0;_1 = k)p(0—1 = kly1.¢—1) = p(1 — @) + (1 — p)a = po

k=0
Q@ What is p(yely1:¢—1)?
L 2 2
pytlyie—1) = D pytls = k)p(6r = kly1.t—1) = PoN(yt;0,0%) + p1 N(ys; 1,0%)
k=0
@ Whatis p(6; = 1|y1.4)?
p(yel0y = Dp(0¢ = Llyr:e—1) P1N(y;1,0%)

p(0t = 1ly1:¢) = =
p(ytly1:e—1) poN(yt;0,02) + p1N(yt; 1,02)
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Inferential goals
Hidden Markov model

Definition
A hidden Markov model (HMM) is a state-space model whose state is
finite.

(Note: this is not a universal definition.)

So let
° 7r§' be the probability distribution for the state at time ¢ given
information up to time ¢/, e.g. 7er = P(0; = ily1.¢)-
@ P be the transition probability matrix, e.g. F;; is the probability of
moving from state ¢ to state j in 1 time step.

® p(y:|0:) be the observation density or mass function.
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General state space models EERIEICHIEIR-CEH

Inference in a hidden Markov model

Assume ) is given.
@ What is forecast distribution at time ¢ given only 7, i.e. 7?7 Recursively,

we have

0_ 0
w, =m;_1 P.

Alternatively, we have

al =mP' P'=P"'P and P'=P

@ What is the filtered distribution at time #, i.e. 7 ;? Find this recursively via
N t—1
i < Pyl = i)m Ty - P

Although smoothing can be useful, it is often of more use in Bayesian analyses to
perform backward sampling.
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General state space models EERIEICHIEIR-CEH

Joint posterior

The joint distribution for 8 = (0,61, ...,07) can be decomposed as

p(ely) :p(907917"'7?T|y1:T)
p(Or|y1.7) HﬁzT P(0r—110¢, y1.1)
= p(eT’y1:T> Ht:T (01 ’02&7 y1:t—1)

where (0:]0 )p(O—1] )
_ POt —1,Y1:t—1)P(Ut—1|Y1:t—1
P(0i-110s,y1:0-1) = o)
_ pOt]0i—1)p(Or—1ly1:t—1)
p(Ot|y1:t—1)

X p(0¢]01—1)p(Or—1|y1:4—1)
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General state space models Inferential goals

Backward sampling

The joint distribution for # can be decomposed as

T
p(Oly) = p(Orlyrr) [ ] p(0e-1161,y1:0-1)

t=1
and
P(0¢—1104, y1:0-1) o< p(0¢|0¢—1)p(Or—1]y1:0-1)-
Suppose we have all the filtered distributions, i.e. 7l for t =0,...,T.

An algorithm to obtain a joint sample for 4 is
1. Sample 07 ~ p(O7|y1.7) which is a discrete distribution with
P(Or =ilyrr) = 71
2. Fort=1T,...,1, sample 6;_1 from a discrete distribution with

Pgnl !
. T—1 2,0t T —1,4
P(et—l - Z|0t73/1:t—1) X —Pi,@tﬂ—Tfl,i - S T—1 °
D=1 Py g, mp_1 i
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Markov model
Markov model

Consider a Markov model where the states are observed directly, but the
transition probability matrix W is unknown. If the sequence of states are
y1:t = (Y1, ..,Yt), we are interested in the posterior

p(Ylyr:t).

Since this is a row stochastic matrix ¥, we have

Zwij =1 Vi.
j=1

So what priors are reasonable for W?

n
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General state space models Markov model

Priors for row stochastic matrices

One option is a set of independent Dirichlet distributions for each row, i.e.
let W;. be the ith row of W, then

where A; is a vector of length S and A is the matrix with rows A;.

Do we want more structure here?
@ sparsity (many zero elements)

@ similarity between rows
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Markov model
Dirichlet distribution

The Dirichlet distribution (named after Peter Gustav Lejeune Dirichlet),
i.e. P~ Dir(a), is a probability distribution for a probability vector of
length H. The probability density function for the Dirichlet distribution is

H
(a1 +---+ap) ap—1

L(a1)---T(ag) h:1ph

p(P;a) =

where p, > 0, Zthl pr =1, and a > 0.

Letting ag = 25:1 ap, then some moments are
o Elpn] = g,
_ an(ao—ap)
o V[ph] - a%(a0+l) ’
e Cov(pn,pr) = _ag‘(l(’;:il)

ap—1
o for ap, > 1.

A special case is H = 2 which is the beta distribution.
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Conjugate prior for multinomial distribution
Conjugate prior for multinomial distribution

The Dirichlet distribution is the natural conjugate prior for the multinomial
distribution. If

Y ~ Mult(n, ) and m ~ Dir(a)

then
mly ~ Dir(a + y).

Some possible default priors are
@ a = 1 which is the uniform density over ,
@ a = 1/2 is Jeffreys prior for the multinomial,
@ a=1/S and
@ a =0, an improper prior that is uniform on log(my,). The resulting
posterior is proper if y, > 0 for all h.
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General state space models Conjugate prior for multinomial distribution

Dirichlet priors for Markov models

Let A be the hyperparameter with rows A; such that

ind

and C' be the count matrix of observed transitions, i.e. Cj is the count
vector of transitions from i to all states and Cj; is the count of transitions
from i to j.

The posterior distribution p(¥|y;) is fully conjugate with A’ = A + C such

that A
Wly % Dir(A}) £ Dir(4; + Cy)

where A’ is the ith row of A’.
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General state space models Conjugate prior for multinomial distribution

Inference for HMM with unknown transition matrix ¥

Suppose we have a HMM with unknown transition matrix ¥. How can we
perform posterior inference?
If we assume ¥; nd Dir(A), then a Gibbs sampling approach is

1. Sample 01|,y ~ [T, p(0i-1]0r: Y14, ©).

) ind . )
2. Fori=1,...,8, sample ¥;|0,y '~ Dir(A; + C;) where C; is the
count vector of transitions from ¢ to all states.
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